搜索

x
中国物理学会期刊

选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用

CSTR: 32037.14.aps.61.088502

Investigation of spectral regulation in dual- wavelength light-emitting diodes by using the selective p-doped barriers

CSTR: 32037.14.aps.61.088502
PDF
导出引用
  • 采用软件理论分析的方法对选择性p型掺杂量子阱垒层在InGaN双波长发光二极管(LED)中的光谱调控作用进行模拟分析.分析结果表明, 选择性p型掺杂对量子阱中电子和空穴浓度分布的均衡性起到一定的调控作用, 在适当选择p型掺杂量子阱垒层层数的条件下,能够改善量子阱中载流子的辐射复合速率, 降低溢出电子浓度,从而有效提高芯片内量子效率,并减缓内量子效率随驱动电流增大而快速下降的趋势.随着活性层量子阱增加到特定数量, 选择性p型掺杂的调控效果更加明显, LED芯片的双波长发光峰强度达到基本均衡.

     

    The electrical and the optical characteristics of dual-wavelength light-emitting diode (LED) with the newly designed selective p-doped barriers are investigated numerically. The simulation results show that the selective p-doped barriers can improve the distribution equilibria of electron and hole concentrations in each quantum well (QW). The radiative recombination rate of QW is enhanced remarkably when specific number of p-doped barriers is adopted, and the electron leakage current is suppressed obviously with this new design. Therefore, the internal quantum efficiency is improved and the trend of efficiency drooping with the increase of current injection is also alleviated. Moreover, the curve peaks of the spectrum become quite uniform when the specific number of vertically-stacked QWs is adopted, and the spectral regulation of the dual-wavelength LED is more effective.

     

    目录

    /

    返回文章
    返回