搜索

x
中国物理学会期刊

厄米多项式算符的新恒等式及其在量子压缩中的应用

CSTR: 32037.14.aps.61.110302

New Hermite-polynomial-operator identities and their application in quantum squeezing

CSTR: 32037.14.aps.61.110302
PDF
导出引用
  • 通过发现有关厄米多项式算符Hn(X)的恒等式, 并结合有序算符内的积分技术, 得到了一些关于量子压缩的算符新恒等式, 这对于研究压缩粒子数态波函数十分有用.

     

    By introducing the Hermite-polynomial-operator Hn(X), where X is the coordinate operator (or the quadrature operator in quantum optics theory), and combining the technique of integration within an ordered product of operators, we derive some new operator identities about quantum squeezing, which are useful for studying the squeezed number state.

     

    目录

    /

    返回文章
    返回