搜索

x
中国物理学会期刊

具有色散系数的(2+1)维非线性Schrdinger方程的有理解和空间孤子

CSTR: 32037.14.aps.61.190508

Rational solutions and spatial solitons for the (2+1)-dimensional nonlinear Schrdinger equation with distributed coefficients

CSTR: 32037.14.aps.61.190508
PDF
导出引用
  • 非线性Schrdinger方程是物理学中具有广泛应用的非线性模型之一. 本文采用相似变换, 将具有色散系数的(2+1)维非线性Schrdinger方程简化成熟知的Schrdinger方程, 进而得到原方程的有理解和一些空间孤子.

     

    The nonlinear Schrdinger equation is one of the most important nonlinear models with widely applications in physics. Based on a similarity transformation, the (2+1)-dimensional nonlinear Schrdinger equation with distributed coefficients is transformed into a traceable nonlinear Schrdinger equation, and then two types of rational solutions and several spatial solitons are derived.

     

    目录

    /

    返回文章
    返回