With the combination of pupil division, Wollaston prism angle shear and Savart plate lateral shear interference, a new technology that can aquire the message of imaging, polarization and spectrum simultaneously is presented. The system works at the pushing mode with neither mechanical movable nor electrically tunable device, and four quarters of the single charge-coupled device can get four interferograms of different polarization states (two polarization-difference spectral imagings). The device is discussed in detail, and the relationship between azimuth of the prism principal cross section and the output light intensity is analyzed, and then system parameters are optimized. In the paper, we derive the interference fringe intensity distribution formula, use computer numerical simulation to verify the feasibility and accuracy of this method, and thus provide an important theory basis and the practice instruction for designing a new type of imaging spectrometer and its engineering applications.