搜索

x
中国物理学会期刊

SiC过渡层对氟化类金刚石薄膜附着特性的影响

CSTR: 32037.14.aps.62.015209

Influence of SiC intermediate layer on adhesion property of F-DLC film

CSTR: 32037.14.aps.62.015209
PDF
导出引用
  • 采用射频反应磁控溅射法在316L不锈钢基片上分别沉积了两种薄膜: 一种是氟化类金刚石薄膜(F-DLC), 另一种是先镀上一定厚度的SiC过渡层再沉积F-DLC. 着重研究了薄膜的附着力随过渡层制备条件的变化规律.结果显示, 增加SiC过渡层后薄膜的附着力明显增加, 且附着力随SiC过渡层的制备条件有所变化, 在射频输入功率为200 W, 沉积时间5 min制备出的SiC过渡层上再沉积F-DLC时, 附着力可达8.7 N, 远高于未加过渡层时F-DLC膜的附着力(4 N). 通过研究SiC的沉积速率曲线、表面形貌和红外光谱, 探讨了SiC过渡层及其制备条件影响薄膜附着力的相关机制.

     

    Two kinds of films are deposited on 316L stainless steel substrates by radio frequency reactive magnetron sputtering technique. One is fluorinated diamond-like carbon film (F-DLC) deposited on the 316L stainless steel substrate directly and the other is F-DLC with SiC intermediate layer. This paper focuses on the changing regulation of film adhesion with preparation condition. As the result, the adhesion of fluorinated diamond-like carbon film with SiC intermediate layer is obviously much better than that of F-DLC, and the adhesion is dependent on preparation condition of preparation SiC intermediate layer. The adhesion of F-DLC can reach 8.7 N with 200 W RF input power and 5 min deposition time, which is much bigger than the adhesion of F-DLC without intermediate layer (4 N). The mechanism of the preparation condition of SiC influencing the adhesive force of F-DLC is studied by investigating the deposition rate curve, surface morphology and infrared spectrum.

     

    目录

    /

    返回文章
    返回