-
将基于辅助微分方程的完全匹配层(ADE-PML)吸收边界条件引入到基于Daubechies尺度函数的时域多分辨率分析算法中. 与目前广泛应用的Berenger完全匹配层(PML)和各向异性介质完全匹配层(APML) 相比, 该吸收边界条件的实现更加容易且更节省内存. 数值结果表明, ADE-PML在吸收传播模和低频凋落模方面均优于PML和APML.
-
关键词:
- 完全匹配层 /
- 辅助微分方程 /
- 时域多分辨率分析 /
- Daubechies尺度函数
A new implementation of perfectly matched layer (PML) with auxiliary differential equation (ADE-PML) is presented for the multiresolution time-domain method. The implementation is easier to obtain and can save more memories than the popularly used PML proposed by Berenger and the anisotropic perfectly matched layer (APML) when a more generalized medium is treated. Numerical results demonstrate that the ADE-PML is more superior to the PML and APML in absorbing propagation modes and low-frequency evanescent modes.-
Keywords:
- perfectly matched layer /
- auxiliary differential equation /
- multiresolution time-domain /
- Daubechies scaling function







下载: