-
给出了采用辛Runge-Kutta (R-K)方法求解Lagrange-Maxwell方程的数值积分方法, 并数值研究了RLC电路弹簧耦联系统中极板的运动及电流的变化情况, 其计算结果和传统的R-K方法相一致, 说明利用辛积分算法研究机电动力系统是合理和有效的, 并在此基础上采用辛R-K方法研究了Noether意义下的形式不变性.
-
关键词:
- 完整机电系统 /
- 辛R-K方法 /
- Lagrange-Maxwell方程 /
- Noether守恒量
In this paper, we show the numerical integration method of solving Lagrange-Maxwell equation by using the symplectic Runge-Kutta (R-K) method, and numerically study the motion of the plate in an RLC circuit spring coupled system and the current changes. Its result is consistent with that obtained by the traditional R-K method, which demonstrates symplectic integration algorithm is reasonable and effective in studying the electro-mechanical systems. And on this basis, the form invariance of Noether sense is studied by using the symplectic Runge-Kutta method.-
Keywords:
- holonomic electro-mechanical system /
- symplectic Runge-Kutta method /
- Lagrange-Maxwell equation /
- Noether conserved quantity







下载: