-
Ge1-xSnx是一种新型IV族合金材料, 在光子学和微电子学器件研制中具有重要应用前景. 本文使用低温分子束外延(MBE)法, 在Ge(001)衬底上生长高质量的Ge1-xSnx合金, 组分x分别为1.5%, 2.4%, 2.8%, 5.3%和14%, 采用高分辨X射线衍射(HR-XRD)、卢瑟福背散射谱(RBS) 和透射电子显微镜(TEM)等方法表征Ge1-xSnx合金的材料质量. 对于低Sn组分(x 5.3%)的样品, Ge1-xSnx合金的晶体质量非常好, RBS的沟道/随机产额比(min)只有5.0%, HR-XRD曲线中Ge1-xSnx衍射峰的半高全宽(FWHM)仅100'' 左右. 对于x=14%的样品, Ge1-xSnx合金的晶体质量相对差一些, FWHM=264.6''.As a new group-IV semiconductor alloy, Ge1-xSnx is a very promising material for applications in photonic and microelectronic devices. In this work, high-quality germanium-tin (Ge1-xSnx) alloys are grown on Ge(001) substrates by molecular beam epitaxy, with x=1.5%, 2.4%, 2.8%, 5.3%, and 14%. The Ge1-xSnx alloys are characterized by high resolution X-ray diffraction (HR-XRD), Rutherford backscattering spectra (RBS), and transmission electron micrograph (TEM). For the samples with Sn composition x 5.3%, the Ge1-xSnx alloys each exhibit a very high crystalline quality. The ratio of channel yield to random yield (min) in the RBS spectrum is only about 5%, and the full width at half maximum (FWHM) of the Ge1-xSnx peak in HR-XRD curve is 100''. For the sample with x=14%, the crystalline quality of the alloy is degraded and FWHM is 264.6''.







下载: