搜索

x
中国物理学会期刊

基于超材料吸波体的低雷达散射截面微带天线设计

CSTR: 32037.14.aps.62.064103

Design of low-radar cross section microstrip antenna based on metamaterial absorber

CSTR: 32037.14.aps.62.064103
PDF
导出引用
  • 设计了一种高吸波率、宽入射角、无表面损耗层的超材料吸波体, 并将其用于微带天线的带内雷达散射截面(radar cross section, RCS)减缩.实验结果表明: 设计的吸波体的厚度为0.3 mm, 吸波率达99.9%, 相比普通微带天线, 加载该吸波体后的天线在工作频带内法向RCS减缩都在3 dB以上, 最大减缩16.7 dB, 单站RCS在-30°–+30° 角域、双站RCS在-90°–+90°角域减缩超过3 dB, 且天线辐射性能保持不变. 证实了该吸波体具有良好的吸波效果, 可以应用于微带天线的带内隐身.

     

    A metamaterial absorber with high absorptivity, wide incident angle and no surface ullage layer is designed and applied to microstrip antenna to reduce its radar cross section (RCS). The results show that the absorber can exhibit an absorption of 99.9% with a thickness of 0.3 mm. Compared with the conventional microstrip antenna, the proposed antenna has an RCS reduction of more than 3 dB in the boresight direction in the working frequency band, and the largest reduction can reach 16.7 dB, the monostatic and bistatic RCS reduction are over 3 dB from -30° to +30° and -90° to +90° respectively, while the radiation performance is kept, which proves that the absorber has an excellent absorptivity and could be applied to microstrip antennas to achieve in-band stealth.

     

    目录

    /

    返回文章
    返回