搜索

x
中国物理学会期刊

非线性系统的非对角Berry相

CSTR: 32037.14.aps.62.110302

Off-diagonal Berry phase in nonlinear systems

CSTR: 32037.14.aps.62.110302
PDF
导出引用
  • 研究了非线性系统中非对角情况的Berry相位, 给出了非线性非对角Berry相位的计算公式. 结果表明, 在非线性非对角情况下, 总相位包含有动力学相位, 通常意义的Berry相位, 以及非线性引起的附加相位. 此外, 还包含有非对角情况时所特有的新的附加项. 这新的一项表示, 当系统哈密顿慢变时产生的Bogoliubov涨落, 与另一个瞬时本征态之间的交叉效应, 进而对总的Berry相位产生影响. 作为应用, 对二能级玻色爱因斯坦凝聚体系, 具体计算了非线性非对角的Berry相位.

     

    In this paper, we have investigated the off-diagonal Berry phase of nonlinear systems and presented its explicit expression. The results show that, for nonlinear systems, the off-diagonal berry phase contains a new term in addition to the dynamical phase, the geometric phase and the nonlinear phase. This new term can describe a cross effect between the Bogoliubov excitation around one eigenstate and another instantaneous eigenstate, while the Bogoliubov excitations are found to be accumulated during the adiabatic evolution and contribute a finite phase of geometric nature. As an application, the off-diagonal Berry phase of a two-well trapped Bose-Einstein condensate system is calculated.

     

    目录

    /

    返回文章
    返回