搜索

x
中国物理学会期刊

磁刺激穴位复杂脑功能网络构建与分析

CSTR: 32037.14.aps.62.118704

Construction and analysis of complex brain functional network under acupoint magnetic stimulation

CSTR: 32037.14.aps.62.118704
PDF
导出引用
  • 本文采用互信息方法对磁刺激内关穴过程中的脑电信 号进行了两两通道间非线性时域关联特性分析, 构建了不同频率刺激前、刺激中、刺激后的脑功能网络, 并基于复杂网络理论对脑功能网络的特征进行了深入研究. 结果表明, 磁刺激频率为3 Hz 时, 大脑功能网络的平均度、平均聚类系数和全局效率与刺激前相比均有显著升高, 平均路径长度显著降低, 并且相应脑功能网络的"小世界"属性有所增强, 信息在大脑各区域间的传递更加高效. 本研究首次开展了磁刺激穴位复杂脑功能网络的构建与分析, 为探索磁刺激穴位对大脑神经调节的作用和机理提供新思路和新方法.

     

    Brain is a complex nonlinear dynamic system consisting of related functional regions that can be described by the complex network model. Acupoint magnetic stimulation is an equivalent external stimulus for brain, which can be used as an important technical method to study the regulation mechanism of complex nervous system. It is of great significance to research the effect of acupoint magnetic stimulation on the structure and characteristics of brain functional network. Magnetic stimulation was applied to Neiguan (PC6) and the acquired EEG data were analyzed using dual-channel nonlinear method of mutual information in time domain. The corresponding brain functional networks before, during and after a magnetic stimulation were constructed and the characteristic parameters were studied based on the complex network theory. Results show that the average degree, average clustering coefficient and global efficiency of the brain functional network were increased under magnetic stimulation frequency of 3 Hz, while the average path length was reduced. The small world attribution of the corresponding functional network was enhanced, which made the information transfer among brain regions more efficiently. The brain functional networks under acupoint magnetic stimulation is studied for the first time as far as we know, which provides a new idea and approach to investigate the effect and regulation mechanism of transcutaneous acupoint magnetic stimulation to the complex nervous system.

     

    目录

    /

    返回文章
    返回