搜索

x
中国物理学会期刊

基于压缩表示的离子刻蚀仿真三维表面演化方法

CSTR: 32037.14.aps.62.208201

A 3D profile evolution method of ion etching simulation based on compression representation

CSTR: 32037.14.aps.62.208201
PDF
导出引用
  • 为了研究表面演化过程的机理, 提出了一种基于压缩表示的三维表面演化方法来模拟等离子体刻蚀工艺,并着重探讨了对离子刻蚀的仿真. 为了解决三维元胞自动机内存需求量大的问题, 该方法将二维数组和动态存储方式相结合, 既实现元胞信息的无损压缩存储, 又保持三维元胞间的空间相关性. 实验结果也表明该方法不仅节省了大量内存, 而且在高分辨率条件下查找离子初始碰撞的表面元胞效率较高, 满足高分辨率仿真的要求. 将该方法应用于实现刻蚀工艺三维表面仿真中, 模拟结果与实验结果对比验证了该方法的有效性.

     

    In order to study the mechanism of the profile evolution process, a three-dimensional (3D) profile evolution method based on compression representation is proposed to simulate the plasma etching process and consider emphatically ion etching. To solve the problem of large memory requirements of 3D cellular model, the presented method adopts a new data structure, which combines two-dimensional array with dynamic storage, to represent cellular information. The structure realizes the lossless compression of cellular information and keeps the spatial correlation between 3D cells. The experimental results show that the method not only significantly reduces the memory, but also has a higher searching efficiency of surface cell which ion first passes through in high-resolution simulation. The method is applied to 3D profile evolution simulation of silicon etching process. A comparison between the simulation results and the experimental results also verifies the effectiveness of the proposed method.

     

    目录

    /

    返回文章
    返回