搜索

x
中国物理学会期刊

多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质

CSTR: 32037.14.aps.62.233302

Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+

CSTR: 32037.14.aps.62.233302
PDF
导出引用
  • 利用量子化学从头计算方法MRCI+Q在AVQZ级别上对BS+离子进行了研究. 通过计算得到了与BS+离解极限B+(1Sg)+S(3Pg)和B+(1Sg)+S(1D)对应的5个-S态,确认了BS+离子的基态为X3电子态,而第一激发态1+的激发能Te仅仅为564.53 cm-1. 首次纳入的旋轨耦合效应(SOC)使得BS+的5个-S态分裂成为9个态,原有的两个离解极限分裂为B+(1S0)+S(3P2),B+(1S0)+S(3P1),B+(1S0)+(3P1)以及B+(1S0)+S(1D2). 在考虑自旋轨道耦合效应之后,态的基态为X2态. 通过势能曲线(PECs)可以发现所得到的-S态和态均为束缚态,利用LEVEL8.0程序拟合得到了对应电子态的光谱常数,这些结果可以为实验和理论方面进一步研究BS+的光谱性质提供准确的电子结构信息.

     

    The high-level quantum chemistry ab initio multi-reference configuration interaction method (MRCI) with reasonable aug-cc-p VQZ basis sets is used to calculate the potential energy curves of 5 -S states of BS+ radical related to the dissociation limit B+(1Sg)+S(3Pg) and B+(1Sg)+S(1D), where the ground state of X3 is determined. The spin-orbit interaction is firstly considered, which makes the calculated 5 -S states split in to 9 states. Calculated results show that avoided crossing rule exists between the states of the same symmetry. Analysis of electronic structures of -S states shows that the -S electronic states are multi-configuration in nature. Then the spectroscopic constants of the bound -S and states are obtained by solving the radial Schrdinger equation. All of these data will provide accurate information of the electron structure for further research on BS+ in theory and experiment.

     

    目录

    /

    返回文章
    返回