搜索

x
中国物理学会期刊

电沉积Cu-In-Ga金属预制层的硒硫化研究

CSTR: 32037.14.aps.62.238801

Studies on sulpho-selenization of electrodeposited Cu-In-Ga metallic precursor

CSTR: 32037.14.aps.62.238801
PDF
导出引用
  • 以H2S气体作为硫源、固态蒸发硒蒸气作为硒源对电沉积Cu-In-Ga金属预制层进行硒硫化处理. 通过电沉积Cu-In-Ga金属预制层在不同衬底温度下硒化、硫化和硒硫化的对比实验,发现CuInS2相和CuIn(S,Se)2相优先生成,抑制了CuInSe2相的生成,促使InSe相薄膜向内部扩散,减弱了薄膜两相分离现象. 采用先硒化后硒硫化处理工艺优化了Cu(In,Ga)(S,Se)2薄膜的制备工艺,在250 ℃预硒化得到了开路电压为570 mV的太阳电池,在更高的预硒化温度得到了较大短路电流的太阳电池,最终优化得到了效率达到10.4%的电池器件.

     

    In this paper, the electrodeposited Cu-In-Ga metallic precursors have been sulpho-selenized by using H2S gas as the sulfur source and Se vapor as selenium source. Through the comparative experiments of selenization, sulfization and sulpho-selenization of the Cu-In-Ga metallic precursor, it has been found that the formations of CuInS2 phase and CuIn(S,Se)2 phase have priority over and restrain the formation of CuInSe2, so that the InSe phase diffuses into the film and weakens the phenomenon of separation into two phases in the film. Then the process of first selenization and sulfization next was made to optimize the preparation of Cu(In,Ga)(S,Se)2 film. At 250 ℃, the pre-selenization temperature, the solar cells with 570 mV open circuit voltage are prepared, while at a higher pre-selenization temperature, the solar cells with a large short-circuit current are prepared. Finally the optimized solar cell with 10.4% efficiency is obtained.

     

    目录

    /

    返回文章
    返回