搜索

x
中国物理学会期刊

O+DCl→OD+Cl反应的动力学性质研究

CSTR: 32037.14.aps.63.103401

Dynamics for the reaction O+DCl→OD+Cl

CSTR: 32037.14.aps.63.103401
PDF
导出引用
  • 利用准经典轨线方法计算了O+DCl→OD+Cl 反应的动力学性质. 所得到的积分反应截面反映出该反应为典型的放热反应,这与势能面反应路径上没有能垒的特点一致. 其微分反应截面的分布表明反应产物的前向散射和后向散射是不对称的,前向散射强于后向散射,因此该反应遵循间接反应机理,此机理通过对反应轨线进行抽样分析得到验证. 反映两矢量K-J’相关的分布函数P(θr)和取向系数2(J’·K)>值的变化趋势均反映出产物分子OD 的取向程度随碰撞能的增加先减弱后增强. 反映三矢量K-K’-J’相关的二面角分布函数P(ør)表明产物分子转动角动量具有沿y 轴的取向效应,当碰撞能较高时出现了比较明显的沿y 轴正向的定向效应. 随着碰撞能的增加,产物分子的转动由“平面内” 机理向“平面外” 机理过渡.

     

    With the quasi-classical trajectory method the stereodynamics of the O+DCl→OD+Cl reaction on the ground potential energy surface is investigated. The characteristic of calculated integral cross-section is consistent with that of the non-energy barrier reaction path on the potential energy surface, which implies that the title reaction is a typical exothermic reaction. The obtained differential reaction cross-section shows that the products tend to both forward and backward scattering, and the forward scattering is stronger than the backward one. So we can infer that the reaction follows the indirect reaction mechanism that has been verified by the randomly abstractive reaction trajectories. The distribution curves of P(θr) and 2(J'· K)> reflect that the degree of rotational alignment of the product OD first increases and then decreases with collision energy increasing. The product rotational angular momentum vector J' is aligned along the y-axis direction but is oriented along the positive direction of y-axis at higher collision energy. With the increase of the collision energy the rotation mechanism of the product molecules transits from the “in-plane” mechanism to the “out-of-plane” mechanism.

     

    目录

    /

    返回文章
    返回