搜索

x
中国物理学会期刊

复合函数算符的微商法则及其在量子物理中的应用

CSTR: 32037.14.aps.63.240302

Differential quotient rules of operator in composite function and its applications in quantum physics

CSTR: 32037.14.aps.63.240302
PDF
导出引用
  • 给出了在量子物理学、量子统计学、算符排序理论、矩阵论以及控制理论中有着重要用途的复合函数算符的一般微分法则, 利用这一法则研究了Wigner算符和Weyl对应规则中的积分问题, 证明了两类典型的算符恒等公式. 给出了Wigner算符的有序算符内的微分形式, 并得到了一些重要函数的新的微分式. 最后, 引入了一个参数型的Wigner算符来统一正规序、Weyl编序以及反正规序三种算符排序.

     

    Differential quotient rule of composite function operator and its applications in quantum physics, quantum statistics, operator ordering theory, matrix theory and control theory are given. The integration problem of Wigner operator and Weyl corresponding rules are studied. Two kinds of typical operator identity formulas are proved. The differential form of Wigner operator in ordered product of operators and new differential form of important functions are obtained. Finally, a Wigner operator with parameter for unifying regular order, Weyl sequencing and abnormal order is introduced.

     

    目录

    /

    返回文章
    返回