搜索

x
中国物理学会期刊

高质量高取向(100)面金刚石膜的可控性生长

CSTR: 32037.14.aps.64.028101

Preparation of the high-quality highly (100) oriented diamond films with controllable growth

CSTR: 32037.14.aps.64.028101
PDF
导出引用
  • 应用微波等离子体化学气相沉积技术, 在低气压下对(100)晶面金刚石膜的表面形貌、质量、取向和生长率进行了可控性生长研究. 结果表明: 基片温度与甲烷浓度对(100)晶面金刚石膜的生长存在耦合规律. 为了获得表面形貌相似的(100)晶面金刚石膜, 在沉积过程中, 增加碳源浓度的同时需要同时升高基片温度; 当甲烷浓度为3.0%, 基片温度从740 ℃上升至1100 ℃ 的过程中, 金刚石膜的晶面取向变化可分为五个阶段, 其中当基片温度在860 ℃至930 ℃时, 很适合高取向(100)晶面金刚石膜生长; 另外, 金刚石膜的质量和生长速率分别与基片温度和甲烷浓度成正比. 为了获得高质量高取向(100)晶面金刚石膜, 应当选择合适的基片温度和甲烷浓度.

     

    The high-quality highly (100) oriented diamond films each with controllable surface morphology, quality, orientation, and growth rate are prepared at low pressure by microwave plasma chemical vapor deposition. The results show that there is a coupled effect between substrate temperature and methane concentration on the growth of (100) oriented diamond films. The substrate temperature should be increased with increasing the methane concentration in order to obtain similar surface morphologies. When the methane concentration is 3.0%, the results indicate that there are five states for the orientation change with the substrate temperature increasing from 740 ℃ to 1100 ℃, and the diamond films with (100) orientation can be deposited at the substrate temperatures ranging from 860 ℃ to 930 ℃. Moreover, the quality and growth rate of each of (100) oriented diamond films are proportional to the substrate temperature and methane concentration, respectively. In order to obtain the high-quality highly (100) oriented diamond films, the substrate temperature and methane concentration should be both appropriate.

     

    目录

    /

    返回文章
    返回