搜索

x
中国物理学会期刊

铜铁稀磁合金中铁磁杂质之间相互作用对低温热电势的影响

CSTR: 32037.14.aps.64.156101

Influence of iron impurity interaction in copper-iron dilute magnetic alloy at low temperatures

CSTR: 32037.14.aps.64.156101
PDF
导出引用
  • 本文提出在铜铁稀磁合金中高浓度铁磁杂质之间的相互作用对低温热电势的影响巨大, 基于耦合杂质理论, 得出了高浓度铜铁稀磁合金的热电势在4-100 K的温度范围内随温度变化的理论曲线. 理论曲线与铁杂质浓度含量为0.1%(at) Fe, 0.13%(at) Fe和0.15%(at) Fe原子百分比的铜铁合金热电势实验值符合, 为推动低温铜铁稀磁热电偶的应用提供了理论分析基础.

     

    In the paper the coupling impurities theory is used, and both s-d interaction effect and phonon effect in dilute magnetic alloys are discussed . The Green’s function is used to analyse the Hamiltonian of the system. In copper-iron dilute magnetic alloy the magnetic impurities interaction has a huge impact on thermoelectric power in the condition of high concentration of iron. Theoretic value of thermoelectric power of dilute magnetic copper-iron alloy with high concentration of iron changing with temperature is given. We have chosen three typical copper-iron dilute magnetic alloys and calculated the thermoelectric power under the effect of impurities and the effect of impurities interaction. Their atomic percentage concentrations are 0.1%, 0.13% and 0.15% respectively. Theoretical value of the thermoelectric power under the effect of impurities interaction in copper-iron alloy complies with experimental value. This paper provides the basic theoretical analysis for promoting the application of low-temperature copper-iron dilute magnetic thermocouple.

     

    目录

    /

    返回文章
    返回