-
有限温度下的光场理论的核心是引入热真空态,它也是利用量子统计手段全面研究电磁场的基础.本文在Takahashi和Umezawa的热场动力学理论基础上, 首次采用有序算符内的积分方法对负二项式光场,s=s+1(1-)n|nn|寻找相应的热真空态. 发现该热真空态是基于在混沌光场所对应的热真空态上的虚模激发, 或取负二项式纯态的形式s+1(1-)n|n,+,其中代表虚模自由度. 对此热真空态求纯态平均可方便地得到负二项式光场的Wigner 函数和光子数涨落.
-
关键词:
- 负二项式光场 /
- 热真空态 /
- 有序算符内的积分方法 /
- 虚模激发
The core of optical field theory at finite temperature is how to introduce the thermo-vacuum state which is the basis of comprehensive investigation of electromagnetic field by virtue of quantum statistic method. Based on the spirit of thermo-field dynamics initiated by Takahashi and Umezawa, we first employ the integration method within the ordered product of operators to search for thermo-vacuum state for the optical negative binomial state (NBS)s=s+1(1-)n|n,+,+,which takes the form of pure negative binomial state. The newly found thermo-vacuum state brings convenience for evaluating the Wigner function of NBS and the fluctuation of photon numbers in NBS.-
Keywords:
- negative binomial optical field /
- thermo vacuum state /
- integration method within ordered product of operators /
- fictitious-mode excitation








下载: