搜索

x
中国物理学会期刊

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

CSTR: 32037.14.aps.64.216804

In-situ investigation on the growth of Cu-Al intermetallic compounds in Cu wire bonding

CSTR: 32037.14.aps.64.216804
PDF
导出引用
  • 铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而Cu/Al引线键合界面的金属间化合物(intermetallic compounds, IMC)的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性. 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在50220 ℃退火温度下, Cu/Al引线键合界面IMC的生长问题, 实时观测到了Cu/Al IMC的动态生长及结构演变过程. 实验结果表明, 退火前颗粒状的Cu/Al IMC 分布在键合界面, 主要成分为Cu9Al4, 少量成分为CuAl2. 退火后Cu/Al IMC的成分是: 靠近Cu一端为Cu9Al4, 远离Cu的一端为CuAl2. 同时基于原位观测Cu/Al IMC的动态生长过程, 计算得到了Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导.

     

    According to Moore's Law, as the feature size of semiconductor devices becoming smaller and smaller, the chip integration degree keeps increasing. In particular, accompanying with the development of high chip integration and unit size reduction, the metal interconnects, i. e. the wire bonding, are becoming a challenging problem. Copper wire is believed to be an excellent metal for wire bonding, instead of gold wire, due to its attractive advantages such as low cost, favorable electrical and thermal conductivities etc. However, the excess Cu/Al intermetallic compounds (IMC) at the interface of copper wire and aluminum pad will increase the contact resistance and reduce bonding strength. This can affect the properties and reliability of devices. Currently, the evolutions of the interfacial microstructures as well as the growth mechanism of Cu/Al IMC at the bonding interface under thermal condition are still unclear.In-situ transmission electron microscope (TEM) has high spatial resolution and strong analysis ability. With fast CCD cameras, TEM can also record the dynamic structure evolution of the sample in real time. Combined with multi-function holders, TEM can also exert diverse fields and loads on the sample and synchronously monitor their structures and component evolutions. Hence, in situ TEM provides an advanced technique to explore the structural evolution and growth mechanism of Cu/Al IMC.In this paper, the growth mechanism of Cu/Al IMC is investigated during the annealing temperature from 50-220 ℃ based on the in-situ high resolution transmission electron microscopy (in-situ HRTEM). Specifically, the dynamic growth and structural evolution of Cu/Al IMC during annealing are recorded in real time. Results show that the isolated Cu/Al IMC is distributed in the bonding interface before annealing. The main component of IMC is Cu9Al4, whereas the minor one of IMC is CuAl2. After annealing at 50-220 ℃ for 24 h, Cu/Al IMC near the Cu layer is Cu9Al4, while Cu-Al IMC apart from the Cu layer is CuAl2. Meanwhile, the reaction rates and the activation energy of Cu/Al IMC at different temperatures are calculated. Furthermore, the more accurate growth equation of Cu/Al IMC is also proposed based on the in-situ experimental results, which will benefit the optimization of bonding process and the reliability of Cu/Al wire bonding.

     

    目录

    /

    返回文章
    返回