搜索

x
中国物理学会期刊

激光间接驱动球形腔新型光路排布方案

CSTR: 32037.14.aps.65.024202

A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility

CSTR: 32037.14.aps.65.024202
PDF
导出引用
  • 针对激光间接驱动装置中的六端注入球形靶腔结构, 提出了新型光路排布方案, 即单端集束分两环注入(内环注入角度为35、外环注入角度为55). 为了对激光集束在球形腔壁上的辐照特性进行评价, 提出了利用光通量对比度和FOPAI来评价单集束在球腔壁上光斑的均匀性, 以及利用离散度和占空比来评价全部集束在球腔壁上光斑分布的均匀性. 结果表明, 新型光路排布方案与传统光路排布方案相比, 集束在腔壁上的辐照特性保持一致, 不仅可缓解在激光注入孔处的堵孔问题, 而且还可避免传统光路排布方案中集束以小角度入射时在腔内传输所导致的复杂交叉重叠问题. 新型光路排布方案可为球形腔结构在激光间接驱动装置中的方案设计提供有用参考.

     

    In traditional laser quads arrangement schemes for spherical hohlraum in indirect-driven laser facilities, the laser quads to bring about the laser entrance hole (LEH) to close when they are incident at a large angle (55), while the complicated cross and overlap of laser quads inside the spherical hohlraum may be generated when they are incident at a small angle (35). To overcome these problems, a novel laser quads arrangement scheme for spherical hohlraum is proposed. The laser quads injected into the single LEH are divided into two cones (the incident angle of the inner cone is 35, and that of the outer cone is 55). Furthermore, the contrast and the fractional power above the intensity have been proposed to evaluate the irradiation uniformity of single laser quad, while the dispersion degree and the duty ratio are proposed to evaluate the distribution uniformity of all laser quads on the spherical hohlraum wall. Based on the beam smoothing scheme implemented by the combination of one-dimensional smoothing by spectral dispersion, the continuous phase plate and polarization control plate, the propagation model of laser quads in the spherical hohlraum has been built up, and further used to analyze the irradiation uniformity of single laser quad and all the laser quads on the spherical hohlraum wall. On this basis, the irradiation characteristics on the LEHs and the spherical hohlraum wall, and the propagation characteristic of laser quads in the novel and traditional laser quads arrangement schemes have been analyzed and compared. Results indicate that, compared with the traditional arrangement scheme of laser quads, the novel laser quads arrangement scheme has following advantages: The irradiation uniformity on the spherical hohlraum wall of single laser quad and all laser quads remains unchanged. Not only the LEH closure problem can be alleviated, but also the complicated cross and overlap of laser quads inside the spherical hohlraum in the traditional scheme could be avoided. The novel scheme may provide useful reference for the design of spherical hohlraum structure in laser indirect-driven facilities due to its obvious advantages over the traditional scheme.

     

    目录

    /

    返回文章
    返回