搜索

x
中国物理学会期刊

熔化状态下金属样品表面的微喷射问题

CSTR: 32037.14.aps.65.026201

Experimental investigation of ejecta on melted Sn sample under shock loading

CSTR: 32037.14.aps.65.026201
PDF
导出引用
  • 熔化状态下金属样品表面微喷物质的时空演化规律是目前国内外研究关注的热点问题, 不过, 由于压电石英计等传统诊断技术能力的限制, 导致目前对该问题的认识仍存在明显不足. 本文采用作者前期发展的大量程Asay-F窗技术, 结合传统压电石英计, 通过将其布置在距受载Sn样品自由面不同高度位置处的方法, 系统研究了熔化Sn样品表面微喷物质的运动演化规律, 给出了特定时刻微喷物质的密度-空间分布图像. 本文研究结果从实验上确认了微喷物质时空演化过程中的自相似膨胀规律, 成功避免了传统压电石英计由于测量量程偏低导致其获取物理认识不够全面的问题, 为认识动载下金属材料的微喷运动演化规律提供了重要实验支撑.

     

    Ejecta production from the metal surface under shock-loading is currently a focused issue both at home and abroad. However, the traditional experimental techniques, such as piezoelectric pin, only diagnose the ejected data for low-density ejecta but not for high-density ones, giving a poor understanding of this process. Particularly, when ejecta production increases significantly as the loaded metal melts on release or shock, the measurement carried out by the traditional piezoelectric pin becomes worse, and brings further missing knowledge in the ejecta evolution.In this paper, an Asay-F window designed earlier by the authors based on the traditional Asay-window, is employed to investigate the formation process of the ejecta from the melted Sn metal. As indicated by previous experimental findings on shocked Pb sample, the Asay-F window is a reliable and effective tool for measuring the high-density ejecta by comparing the result with those of the piezoelectric pin. The interface velocity within the Asay-F window measured by Doppler pin system, is obtained. On the basis of momentum conservation condition, the physical quantities of ejecta, such as accumulative areal mass, volume density and velocity, are derived from the interface velocity. By analyzing the experimental data diagnosed by the Asay-F window, which is placed at different offsets from the free surface of Sn sample, the expansion evolution of the ejecta is obtained. Through transforming the dynamic volume density to the static one, the picture of the ejecta density distribution changes with the spatial distance at a specific moment, which is explicitly displayed. It is found that the ejecta density distributions gained from the different offsets at the uniform moment are consistent. As a consequence, the self-similar expansion evolution of the ejecta is experimentally confirmed, which successfully avoids the unclear understanding of this process if only examined by the piezoelectric pin. This experiment may lay the foundation of the formation of the ejecta production for the metal sample subjected to high pressure loading.

     

    目录

    /

    返回文章
    返回