搜索

x
中国物理学会期刊

基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性

CSTR: 32037.14.aps.65.084203

Output pulse compressibility of the chirped pulse fiber amplification based on the dissipative solitons

CSTR: 32037.14.aps.65.084203
PDF
导出引用
  • 以不同滤波器带宽下获得的全正色散光纤激光器耗散孤子作为啁啾脉冲放大(CPA)系统的种子脉冲, 研究了光栅对和光纤展宽器CPA系统输出脉冲的可压缩性. 结果表明, 对于大能量耗散孤子种子脉冲, 当CPA系统采用正色散光纤展宽器时, 光纤群速色散与自相位调制之间的相互作用不仅可抑制耗散孤子脉冲光谱调制的影响, 还可使脉冲在光纤展宽器中自相似演化, 从而可提高CPA输出脉冲的可压缩性. 通过优化光纤展宽器长度, 对于耗散孤子种子源, 采用光纤展宽器的CPA系统输出脉冲可压缩性与主脉冲所占脉冲总能量之比均优于采用光栅对展宽器时的情况.

     

    The all-normal-dispersion mode locked fiber laser can produce the dissipative soliton pulses because the laser can tolerate much more nonlinear phase shift than the other mode locked fiber lasers. Such large energy mode locked fiber lasers are excellent seed pulse sources for generating very large-energy ultrashort pulses with fiber chirped pulse amplification (CPA) systems. However, the spectral amplitude modulation carried by the dissipative soliton pulses will severely restrict the compressibility of the output pulses from the typical CPA system. Therefore, it is necessary to investigate and design a suitable CPA system for improving the compressibility of the output pulses according to the properties of dissipative solitons. In this paper, using the dissipative solitons generated by the all-normal-dispersion fiber laser with different spectral filter bandwidths as the input seed pulses, the compressible properties of the pulses for the CPA system with both the grating pair stretcher and the fiber stretcher are investigated. Our simulation results show that, for such a large-energy dissipative soliton seed pulse, when the grating pair stretcher is used in the CPA system, the spectral amplitude modulation of the seed pulse can be mapped to the temporal amplitude modulation by the stretcher, and amplified by the subsequent fiber amplifier, which introduces additional nonlinear phase, finally restricts the compressibility of the output pulses; when the normal-dispersion fiber stretcher is used, the interaction between the group velocity dispersion and the self-phase modulation can not only eliminate the influence of the modulated spectrum of the dissipative soliton on the compressible properties of the pulses, but also make it possible to evolve the pulse self-similarity in the fiber stretcher, and thus improve the compressibility of the output pulses of the CPA system. For the normal-dispersion fiber stretcher CPA system, the compressibility of the output pulses is mainly determined by the fiber stretcher length. If the fiber length is too short, the compressibility of the output pulses may be affected by the uncompleted self-similar evolution of the pulse, while the pulse compressibility is also restricted because the pulse spectral width may exceed the amplifier gain bandwidth due to the self-similar evolution process if the fiber length is too long. Moreover, for the dissipative soliton seed pulses, both the compressibility of the output pulses and the energy ratio of the main pulse to the total pulse for the CPA system with the fiber stretcher are better than those with the grating pair stretcher when the normal fiber stretcher length is suitably optimized.

     

    目录

    /

    返回文章
    返回