搜索

x
中国物理学会期刊

典型大气窗口太赫兹波传输特性和信道分析

CSTR: 32037.14.aps.65.134101

Atmospheric window characteristic and channel capacity of THz wave propagation

CSTR: 32037.14.aps.65.134101
PDF
导出引用
  • 在已有大气传输模型的基础上, 发展了新的太赫兹波大气传输衰减与色散模型, 对宽频太赫兹波在真实大气中传输的衰减和色散特性进行了数值模拟研究. 改进太赫兹时域光谱技术, 对0.3-2.0 THz频段太赫兹波的大气传输特性进行了透射光谱测量, 并得到了一组连续吸收参数. 比对发现实验窗口区强度和吸收峰的位置都与计算结果符合得很好. 据此选取了三个可行的信道: 340, 410和667 GHz窗口区, 利用线性色散理论和无线通信原理分别从物理上精确地计算了这些信道的群速色散参数和信道容量, 并分析了影响最大传输数据率的因素-天线增益. 研究结果表明: 太赫兹波大气传输1 km时, 这三个信道群速色散很小, 信号不易被展宽; 最大传输速率达十几Gbps, 高于单模光纤, 但需要更高的天线增益.

     

    The increasing demand of unoccupied and unregulated bandwidth for wireless communication systems will inevitably lead to the extension of operation frequencies toward the lower THz frequency range. Since atmospheric transmission windows exist in the lower THz frequency range, it can be realized that carrier frequencies of 300 GHz and beyond will be used for communications once the technology for high bitrate data transmission is available. However, the free-space path-loss and the attenuation due to molecules in the atmosphere can significantly reduce the transmittable data rate in the lower THz frequency range.The main factor affecting the behavior of terahertz band is the absorption by water vapor, which not only attenuates the transmitted signal, but also disperses the signal. A new model of the terahertz wave atmospheric propagation of attenuation and dispersion is developed by using the radiation transmission theory and the empirical continuum absorption based on the HITRAN database. Theoretical aspects of absorption are presented, emphasizing those that deserve special attention as frequency increases. The THz wave atmospheric attenuation experimental results and self- and foreign-continuum coefficients obtained with the improved THz-time domain spectroscopy (THz-TDS) technique are analyzed by this model. The intensities and locations of the observed absorption lines are in good agreement with spectral databases. This model accounts for the group velocity dispersion and the total path loss that a wave in the THz band suffers when propagating 1 km distance. The channel capacity of the THz band is investigated by this model under different conditions including antenna gains, channel bandwidth and transmitter power. In order to keep the considerations as general as possible, the derivations are based on simple assumptions and equations. The special requirement for antenna is also discussed.Three communication channels (340 GHz, 410 GHz and 667 GHz) are obtained in terms of the spectrum. The four parameters of the three channels, i.e., available bandwidth, center frequency, dispersion and transmittable data rate, are summarized and quantized. The signals through the atmosphere for the three communication channels within the corresponding atmospheric windows are not easy to broaden due to the low group velocity dispersion; high data rates of up to 10 Gbps or beyond per 1 GHz bandwidth can be transmitted via these channels if the antennas with high gains are used.

     

    目录

    /

    返回文章
    返回