搜索

x
中国物理学会期刊

基于主特征提取的Retinex多谱段图像增强

CSTR: 32037.14.aps.65.160701

Multispectral image enhancement based on Retinex by using structure extraction

CSTR: 32037.14.aps.65.160701
PDF
导出引用
  • 根据Retinex视觉模型中照射分量和反射分量的统计特性,融合多尺度主特征提取法、平台直方图算法、非局部均值滤波及局部细节增强算法可对多谱段图像进行有效增强. 首先利用多尺度主特征提取法估计照射分量,对照射分量进行平台直方图操作,增强全局对比度及图像主结构边缘细节;然后将原图与照射分量相除获取反射分量,对反射分量进行非局部均值滤波抑制噪声,再进行基于局部方差的局部细节增强;最后将增强后的照射分量与反射分量相乘,即为增强图像. 从主观和客观两方面,对X光图像、紫外图像、可见光图像、低照度可见光图像和红外图像实验结果的分析表明,本文算法能够有效地抑制图像噪声、增强图像对比度及细节、改善图像视觉效果,是一种通用有效的多谱段图像增强算法.

     

    Applications in industrial and scientific areas need high-quality multispectral images. However, because of various disadvantages, e.g., adverse environment of sensing, limited spectral bands, etc., multispectral images suffer low contrasts, low signal-noise-ratios, etc. As inputs of applications such as tracking, recognition and so on, multispectral images with low quality may cause those applications to fail. In this paper, aiming to meet practical requirements, we propose an algorithm of efficiently improving miultispectral images. The framework of the proposed method is as follows. According to Retinex theory, a multispectral image can be modeled as multiplicative combination of an illumination component and a reflection component. Typically, an illumination component is of low frequency and determines the dynamic range of pixel intensity, while a reflection component is of high frequency and determines the property of an image. Once we can successfully enhance both an illumination component and a reflection component, which is described later, respectively, we achieve the enhancement of a multispectral image by multiplying two enhanced components. First, we estimate the illumination component based on the principal structures extracted from the multispectral image on a multiple scale, i.e. on a low-level scale, middle-level scale and high-level scale, respectively. The mean value of the three principal structures is used as the estimation of an illumination component. Then the global structure contained in the illumination component, can be obtained by analyzing the corresponding information about its histogram, and is involved to enhance the global contrast and the edge details of the principal structure. Second, with the previously computed illumination component, we can easily derive the reflection component from the multispectral image in pixel-wise division operation. There are adequate image details as well as noise in the reflection component. We suppress the noise and keep the image details by using a non local mean filter. And then we enhance the image details by means of local variances. Finally, multiplying the enhanced illumination component by the filtered reflection component, we enhance the multispectral image. In order to verify the efficiency of our algorithm, experiments are conducted over multispectral image sets including X-ray images, ultraviolet images, well illuminated visible light images, poorly illuminated visible light image, and infrared images. The experimental results show that the proposed algorithm can efficiently remove halo artifacts, well suppress noise and obviously improve local details as well as global contrast. Compared with the state-of-the-art algorithms, the proposed method significantly enhances multispectral images both in vision and in objective analysis by means of information entropy and average gradient.

     

    目录

    /

    返回文章
    返回