搜索

x
中国物理学会期刊

细菌运动中的物理生物学

CSTR: 32037.14.aps.65.178703

Physical biology of bacterial motility

CSTR: 32037.14.aps.65.178703
PDF
导出引用
  • 细菌是一个包含从分子到宏观多尺度多系统强烈耦合的复杂生物体系. 细菌的运动行为在每一个时空尺度都蕴含有丰富的生物和物理学现象. 例如,细菌对氧气和很多化合物有很强的应激反应;细菌体内信号传感网络会影响细菌鞭毛马达的转动;纳米尺度的细菌鞭毛马达转动会影响细菌在界面附近的游动、趋化性、积聚、粘附、飞速旋转;单个细菌的活跃状态和环境的物理化学性质又会影响细菌部落的生长过程.微生物膜在空间中的扩张会形成丰富多彩的宏观自组织斑图. 细菌运动的物理生物学涉及到力学,流体和统计物理等等多个学科的研究范畴. 本文分别介绍细菌鞭毛马达、 细菌微生物膜的集群运动、细菌在界面的运动以及细菌趋化性和生化信号传感等方面的若干最新研究进展.

     

    Bacteria form a complex system. It consists of many components that cover broad size scales, including ions, small molecules, DNA, polymers, sub-micrometer sized organelles and compartments, micrometer sized cells, packs of cells in films of a few micrometers in thickness, large swarms or populations spanning plates over several centimeters in diameter, etc. The mechanisms to be explored span a wide range of time scales from micro-second or shorter for molecular interaction, to milli-second or longer times for diffusion and transport, up to minutes and hours for cellular metabolism, growth, and reproduction. An invisible colony of bacteria can grow rapidly and becomes visible to the human eye in several hours. Novel phenomena or behaviors emerge across these broad size and time scales. For example, the rotation direction and speed of a flagella motor, about 50 nm in diameter, are both tightly regulated by a signaling pathway within the cell. The fast rotation of the helical flagellum driven by the rotary motor is a key to explaining the bacterial swimming trajectory, chemo-taxis, accumulation, adhesion, or anchored body rotation near or at a solid surface. The activities of individual bacteria in response to their physicochemical environment give rise to their collective response such as quorum sensing, swarming, and growth of biofilms. The physical biology of bacteria is an interdisciplinary research covering micromechanics, micro-fluidics, non-equilibrium statistical physics, etc. This review covers several aspects of bacterial motility, including flagella motor behavior, bacterial swimming and accumulation near the surface, the self-organized patterns of bacterial swarms, and chemo-taxis regulated by the biochemical signaling network inside bacteria. Instead of presenting each aspect as a separate topic of microbiological study, we emphasize the strong relations among these topics, as well as the multidisciplinary perspective required to appreciate the strong relations among the topics covered. For instance, we point out the relevance of numerous phenomena in thin film fluid physics to bacterial swarming, such as capillary flow, surface tension reduction by surfactant, Marangoni flow, and viscous fingering. Another notable example is a recent application of a statistical mechanical theory called the first passage time theory to account for the intervals between the switches of bacterial motor rotation from clockwise to counter-clockwise, and vice versa. In concluding remarks, we point out a few open questions in the field of bacterial motility and likely advances that might transform the field. The central view conveyed through this review article is that further progress in the field demands interdisciplinary efforts. Therefore, a collaborative approach among those with both in depth knowledge and broad perspectives in biological and physical sciences will prove to be the most successful ones.

     

    目录

    /

    返回文章
    返回