搜索

x
中国物理学会期刊

相场法模拟Fe-C合金定向凝固的液相通道

CSTR: 32037.14.aps.65.188102

Simulation of liquid channel of Fe-C alloy directional solidification by phase-field method

CSTR: 32037.14.aps.65.188102
PDF
导出引用
  • 在定向凝固的研究中,主要是通过改变推进速度或温度梯度以调节凝固组织,提升合金铸件性能. 对于不同定向凝固条件下组织的形成及相关性质的研究成为了热点,本文主要研究在特定定向凝固条件下Fe-C合金枝晶尖端分裂后形成的液相通道及推进速度对于液相通道的影响. 研究发现:在系统各向异性与材料各向异性的综合作用下,形成了定向凝固液相通道;且随推进速度的增大,液相通道内溶质浓度升高,长度增大,直径基本维持不变. 通过液相通道相关尺度以及溶质富集的模拟结果分析其造成的晶内偏析的程度,同时指出可通过适当降低推进速度来减小液相通道溶质偏析的程度.

     

    In directional solidification, two characteristic parameters determine the dendritic growth: the thermal gradient and the pulling velocity. To achieve the suitable microstructure and improve the performance of casting, they are usually used to resize the pulling velocity or temperature gradient in directional solidification process. The structures obtained under different directional solidification conditions, and their associated properties both have been hot research points. It is difficult to observe the microstructure, which is usually on a micrometer scale, directly in experiment, and the phase-field method becomes a strong tool to understand the dendrite growth pattern. We mainly study the liquid channel formed after Fe-C alloy dendrite tip splitting under the specific condition of directional solidification and analyze the influence on liquid channel of pulling velocity in this paper. We choose the fixed thermal gradient G =20 K/mm which is on the order of the experimental value, and pulling velocity VP no more than 10 mm/s to keep the cooling rate in the range of low speed in dendrite growth, so that the interface kinetic effect can be neglected. Recent experimental results show the different interfacial energies in various compositions of Al-Zn alloy and Fe-C alloy, then we can investigate a series of directional solidification microstructures with fixed alloy Fe-0.5 wt.%C composition at different interfacial energies in our simulations. We find that the liquid channel is formed as a result of anisotropy competition between system and materials, the length and C concentration of liquid channel increase with the pulling velocity increasing, while the diameter of liquid channel is constant. It is interesting to find that there is a minimum of pulling velocity almost equal to 1 mm/s, the tip will not split and no liquid channel forms in the following steps either when the velocity is smaller than the minimum. We also compare the segregation caused by solute enrichment in liquid channel and solute segregation between dendrite arms in a series of simulations: the former is more serious than the latter. Then we point out the way to reduce the segregation caused by liquid phase channel by reducing the pulling velocity properly. It will be more practical to couple the flow field with other external field, such as magnetic field, in the simulation.

     

    目录

    /

    返回文章
    返回