搜索

x
中国物理学会期刊

基于反演场扩散消除的时间反演多目标成像技术

CSTR: 32037.14.aps.65.204102

Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field

CSTR: 32037.14.aps.65.204102
PDF
导出引用
  • 基于时间反演腔理论,分析了时间反演场存在的聚焦扩散现象.通过对该现象的分析,提出了利用Clean算法进行单频时间反演场扩散消除,进而实现时间反演多目标成像的技术.全波仿真结果表明,该技术能够消除时间反演场扩散的影响,利用单一频率信号实现多目标的成像.最后,分析了时间反演镜的选取对时间反演场的影响,并在此基础上,提出了非理想情况下相应的时间反演镜信号均衡算法,为时间反演多目标成像技术的实际应用提供了有效的支撑.

     

    Time reversal technique has the adaptive time-space focusing characteristics, which has been widely used in communication systems, imaging systems, and power combining systems. However, the ideal time reversal processing cannot be implemented in an actual imaging system and some diffusion phenomenon has been observed. In this paper, the diffusion phenomenon of the time reversal field in an imaging system is analyzed based on the time reversal cavity theory. Since the corresponding absorption source cannot be set in an imaging process, the time reversal field will continue to disperse after the convergence. Therefore, the field produced by the time reversal cavity will be similar to the sinc-function near the source. The diffusion field will result in mutual interference between the imaging targets. In a traditional time reversal multi-target imaging system, weaker targets can easily be concealed and artifacts may occur. In this paper, a multi-target imaging technique based on the elimination of the time reversal field diffusion is proposed. In order to eliminate the effect of the diffusion field, the Clean algorithm is used. The Clean algorithm is a de-convolution algorithm, which can effectively suppress the side lobe signal. By using the Clean algorithm in the time reversal imaging system, the interaction between multi-targets can be eliminated. Full-wave simulation shows a good performance of the proposed method. In practice, the time reversal mirrors are used to replace the time reversal cavity, for the fully closed time reversal cavity cannot be implemented. The effects of the time reversal mirrors have also been analyzed in this paper. The result shows that the positions of the time reversal mirrors have an significant influence on the reversed field distribution, which affects the Clean algorithm and the proposed imaging method. In order to eliminate the influence of time-reversal mirror position, an effective time reversal signal equalization algorithm is proposed. In the equalization algorithm, the amplitude of the time reversal signal in the time reversal mirrors is adjusted according to both the distance and the intensity. The proposed equalization algorithm can keep the time reversal field stable and provide effective support for the imaging method.

     

    目录

    /

    返回文章
    返回