搜索

x
中国物理学会期刊

一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究

CSTR: 32037.14.aps.66.014307

A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator

CSTR: 32037.14.aps.66.014307
PDF
导出引用
  • 基于圆周排列的Helmholtz共振腔单元,设计并实现了一种具有低频宽禁带的声人工结构,可以在结构中心处实现二维隔声效果.针对实际模型,搭建了二维声场测量平台,进行了相应的实验研究,实验结果与有限元仿真结果符合较好.该结构在较宽的频带内(680–1050 Hz)可以实现较好的隔声效果,最大隔声量可达41 dB.实验中还研究了单元参数及共振状态对隔声效果的影响.隔声区的大小与共振单元的分布形式有直接关系,而良好的共振状态将对提高隔声量有一定帮助.研究结果对设计新型声防护结构具有理论与应用价值.

     

    Helmholtz resonator(HR) has already been demonstrated both theoretically and experimentally to be a metamaterial with negative mass density and negative bulk modulus simultaneously. The HR can resonate at a frequency corresponding to a wavelength much longer than its geometrical parameters. At this time, the incident acoustic energy can be located. Therefore, the HR structures are considered to be good choices for controlling low-frequency sound waves. Furthermore, existing results indicate that the wide forbidden band could be formed by a one-dimensional structure shunted with detuned HRs. Based on these aforementioned theories, a man-made acoustical structure with broadband low-frequency sound insulation effect is designed by circularly inbuilt HRs. Beyond this structure's surface, a two-dimensional quiet zone can be created. With the same simulated model, an experimental structure is fabricated based on PVC plastic material. The structure consists of five layerd circular plates. In the top four plates, two kinds of holes are drilled. The smaller holes in the top plate act as shot necks of the HR, while the bigger holes in the middle three plates serve as the cavities of the HR. They can construct 60 resonators with different resonant frequencies. Experiments are carried out to study its sound insulation properties. In the experiments, three kinds of HRs with resonant frequencies 785, 840 and 890 Hz from inner loop to outer loop, respectively, are formed. The experimental results are very coincident with the simulation results from the software of COMSOL Multiphysics based on finite element method, which shows that this structure has an excellent sound insulation effect in a frequency band of 680-1050 Hz, and the maximum insulation sound pressure level can reach 41 dB. Meanwhile, the distribution of the two-dimensional sound field is measured. The results point out that the range of the insulation area can be changed with the incident frequency. In addition, the sound insulation effect is sensitive to the resonant state of the HRs. When all of the resonators at the same loop resonate simultaneously, the insulation sound pressure level will be higher. On the contrary, the insulation sound pressure level will be lower because of the energy leaking through the positions where the HRs do not resonate with the others. This work will be of help for designing new sound protection devices for low-frequency sound waves.

     

    目录

    /

    返回文章
    返回