搜索

x
中国物理学会期刊

一类可用Hamilton-Jacobi方法求解的非保守Hamilton系统

CSTR: 32037.14.aps.66.054501

A kind of non-conservative Hamilton system solved by the Hamilton-Jacobi method

CSTR: 32037.14.aps.66.054501
PDF
导出引用
  • Hamilton-Jacobi方法通常被认为是求解完整保守Hamilton系统正则方程的重要手段,但通过现代微分几何理论发现,这种方法的适用范围不仅仅局限于完整保守的Hamilton系统.根据Hamilton-Jacobi理论,证明了经典Hamilton-Jacobi方法可以被推广至一类特殊的非保守Hamilton系统,即如果非保守Hamilton系统受到非保守力,则该系统的Hamilton正则方程也可以用Hamilton-Jacobi方法求解;对于这类非保守Hamilton系统,只要能够找到其对应的Hamilton-Jacobi方程的一个完全解,就可以得到系统正则方程的全部第一积分.经典的Hamilton-Jacobi方法则是上述方法的一个特例.

     

    The Hamilton-Jacobi equation is an important nonlinear partial differential equation. In particular, the classical Hamilton-Jacobi method is generally considered to be an important means to solve the holonomic conservative dynamics problems in classical dynamics. According to the classical Hamilton-Jacobi theory, the classical Hamilton-Jacobi equation corresponds to the canonical Hamilton equations of the holonomic conservative dynamics system. If the complete solution of the classical Hamilton-Jacobi equation can be found, the solution of the canonical Hamilton equations can be found by the algebraic method. From the point of geometry view, the essential of the Hamilton-Jacobi method is that the Hamilton-Jacobi equation promotes the vector field on the cotangent bundle T* M to a constraint submanifold of the manifold T* M R, and if the integral curve of the promoted vector field can be found, the projection of the integral curve in the cotangent bundle T* M is the solution of the Hamilton equations. According to the geometric theory of the first order partial differential equations, the Hamilton-Jacobi method may be regarded as the study of the characteristic curves which generate the integral manifolds of the Hamilton 2-form . This means that there is a duality relationship between the Hamilton-Jacobi equation and the canonical Hamilton equations. So if an action field, defined on UI (U is an open set of the configuration manifold M, IR), is a solution of the Hamilton-Jacobi equation, then there will exist a differentiable map from MR to T* MR which defines an integral submanifold for the Hamilton 2-form . Conversely, if * =0 and H1(UI)=0 (H1(UI) is the first de Rham group of U I), there will exist an action field S satisfying the Hamilton-Jacobi equation. Obviously, the above mentioned geometric theory can not only be applicable to the classical Hamilton-Jacobi equation, but also to the general Hamilton-Jacobi equation, in which some first order partial differential equations correspond to the non-conservative Hamiltonian systems. The geometry theory of the Hamilton-Jacobi method is applied to some special non-conservative Hamiltonian systems, and a new Hamilton-Jacobi method is established. The Hamilton canonical equations of the non-conservative Hamiltonian systems which are applied with non-conservative force Fi = (t)pi can be solved with the new method. If a complete solution of the corresponding Hamilton-Jacobi equation can be found, all the first integrals of the non-conservative Hamiltonian system will be found. The classical Hamilton-Jacobi method is a special case of the new Hamilton-Jacobi method. Some examples are constructed to illustrate the proposed method.

     

    目录

    /

    返回文章
    返回