搜索

x
中国物理学会期刊

基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器

CSTR: 32037.14.aps.66.145201

Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs

CSTR: 32037.14.aps.66.145201
PDF
导出引用
  • 本文设计并数值研究了一种石墨烯加载的不对称金属纳米天线对结构.利用石墨烯费米能级的动态调控特性,实现了电控表面等离激元的单向传输.类似于传统的三明治型纳米天线结构,设计的不对称金属纳米天线对结构可以等效为两个共振的磁偶极子,由于磁偶极子辐射电磁波的干涉,将导致单向传输效应.通过计算腔中的电场分布,发现石墨烯的调谐能力与石墨烯区域的电场强度成正比关系.以上现象都可以通过等效电路模型进行理论解释.此外,该结构具有小尺寸、高效率、宽带宽和易于光电集成等优点,在未来的光子集成与光电子学领域将具有重要的应用.

     

    Surface plasmon polaritons (SPPs), the electromagnetic waves traveling along metal-dielectric or metal-air interface, which originate from the interactions between light and collective electron oscillations on metal surface, have received considerable attention for their promising applications in the future optical field, such as image, breaking diffraction limit, subwavelength-optics microscopy, lithography, etc. However, one of the fundamental issues in plasmonics is how to actively manipulate the propagation direction of SPPs. In this paper, we propose and numerically investigate a graphene-based unidirectional SPP coupler, which is composed of asymmetric plasmonic nanoantenna pairs with a graphene sheet separated by a SiO2 spacer from the gold substrate. The device geometry facilitates the simultaneous excitation of two localized surface plasmon resonances in the entire structure, and consequently, the asymmetric nanoantenna pairs can be considered as being composed of two oscillating magnetic dipoles or as two SPP sources. Because the resonance of the plasmonic antenna pairs depends on the bias voltage applied across graphene sheet and back-gated Au, the phase difference between radiated electromagnetic waves induced by the antenna can be tuned through varying the Fermi level of graphene. Here, approximately a n/2 phase difference between radiated electromagnetic (EM) waves can be acquired at EF 0.81 eV, which indicates that the radiated EM waves can interfere constructively along the direction of the x-axis while interfere destructively along the opposite direction. This directional propagation of EM wave leads to the unidirectional propagation of SPPs. Furthermore, electric field distribution of the cavity demonstrates that the tunability of plasmonic antenna is proportional to the electric field intensity in the vicinity of the graphene region. For our designed structure, the left cavity can provide a significantly larger tunable range than the right one. With this result, we can quantitatively analyze the tuning behavior of graphene-loaded plasmonic antenna based on equivalent circuit model, and draw the conclusions that the unidirectional SPP propagation effect originates from the interference mechanism. In addition, compared with the device reported previously, our proposed device possesses a huge extinction ratio (2600) and more broadband tunable wavelength range (6.3-7.5 m). In addition, it is possible to make up for the deficiencies of current nanofabrication technologies by utilizing its actively controlled capability. All the above results indicate that the proposed active device promises to realize a compactable, tunable, and broadband terahertz plasmonic light source. It will play an important role in future photonic integrations and optoelectronics.

     

    目录

    /

    返回文章
    返回