搜索

x
中国物理学会期刊

Br2分子在360610 nm的光解离动力学研究

CSTR: 32037.14.aps.66.193301

Photodissociation dynamics of Br2 in wavelength range of 360-610 nm

CSTR: 32037.14.aps.66.193301
PDF
导出引用
  • 利用包含转动自由度在内的含时薛定谔方程研究了Br2分子在波长范围为360610 nm的光解离动力学.通过计算得到了Br2分子在四个特征波长处的切片解离影像,并经过分析得到了与切片解离影像相对应的动能分布;计算了Br2分子在波长范围为360610 nm内总的动能分布,以及从A,B和C三个电子态解离的碎片各自所对应的动能分布;计算了A,B和C三个电子态各自的解离概率以及碎片产物的分支比(Br*/(Br+Br*))随波长的变化.

     

    We study the photodissociation of Br2 in a wavelength range from 360 nm to 610 nm in the near-visible UV continuum band based on the calculation of time-dependent quantum wave packet including the rotational degree of freedom. We calculate four representative samples of two-dimensional (2D) slice images taken from photolysis of Br2 molecules, in which the different rings in the 2D slice images are corresponding to the different photodissiation channels. The radius of each 2D slice image ring is positively related to kinetic energy of photofragment. The maximum photofragment flux perpendicular or parallel to the photolysis polarization is also related to photodissiation channel. Furthermore, we calculate the total kinetic energy distribution P(E) and the P(E) distribution from the respective electronic excited states A, B and C in the wavelength range of 360-610 nm, from which we find that the wavelengths corresponding to the maximum dissociation probability from respective electronic excited states A, B and C are 510 nm, 469 nm, and 388 nm, respectively. As is well known, not only the total dissociation probability, but also the respective dissociation probability of electronic excited states is dependent on the laser wavelength. We also calculate the dissociation probabilities from electronic excited states A, B and C, respectively. We find that the dissociation probability of electronic excited state A is not significant when 480 nm and that the peak intensity of the dissociation probability to the A state is about 13.0\% of that to the C state, while that to the B state is about 43.4\%. In addition, because the electronic excited states A and C are related to the photodissociation channel Br + Br, and the electronic excited state B is corresponding to the photodissociation channel Br + Br*, the images which reveal the involvement of more than one product channel can be analyzed by the respective channel branching ratios. At the short wavelength ( 400 nm) the branching ratio (Br*/(Br+Br*)) is small, even near to zero, which reflects that electronic state C transition gives rise to many Br + Br over Br + Br*. However, within the wavelength range (=440-500 nm) Br + Br* photofragments are excess of Br + Br, so the electronic state B transition is dominant. At longer wavelength ( 530 nm) the branching ratio (Br*/(Br+Br*)) is also low, near to zero, indicating the prevalence of electronic state A transition. Ignoring the dissociation from electronic state C, the maximum dissociation probability 469 nm is consistent with branching ratio maximum 462 nm. Because the electronic excited state C is related to the photodissociation channel Br + Br, the branching ratio will be reduced. So the maximum wavelength of branching ratio is blue shifted.

     

    目录

    /

    返回文章
    返回