搜索

x
中国物理学会期刊

基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定

CSTR: 32037.14.aps.67.20172541

Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique

CSTR: 32037.14.aps.67.20172541
PDF
导出引用
  • 噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)由于结合了频率调制光谱与腔增强光谱两种技术,不仅可以将激光耦合到高精细度谐振腔大幅提高腔内功率,还可以实现低气压样品气体的高灵敏测量,因此基于该技术可以实现分子吸收线的饱和,获得亚多普勒光谱,从而能作为激光频率锁定的参考.本文基于光纤激光器的NICE-OHMS技术,将光纤激光器频率锁定到NH3的亚多普勒吸收线上.首先分析了基于Pound-Drever-Hall和DeVoe-Brewer技术实现激光到腔模和调制频率到腔自由光谱区频率锁定的性能,之后在腔内气压为70 mTorr条件下,测量了半高全宽为2.05 MHz的NH3亚多普勒信号,最后将1.53 μm的光纤激光器频率锁定到该亚多普勒吸收线上,相对频率偏差为16.3 kHz,阿伦方差结果显示,136 s积分时间下频率稳定度达到1.6×10-12.

     

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful tool for trace gas detection, which is based on the combination of frequency modulation spectroscopy (FMS) for reduction of 1/f noise, especially residual intensity noise, and cavity enhanced absorption spectroscopy (CEAS) for prolonging the interaction length between the laser and the targeted gas. Because of the locking of modulation frequency in FMS to the free spectral range (FSR) of the cavity, NICE-OHMS is immune to the frequency-to-amplitude noise, which is a main limitation to CEAS. Moreover, due to the building of high power inside the cavity, NICE-OHMS can easily saturate the molecular absorption thus obtain sub-Doppler spectroscopy, which possess a high resolution and odd symmetry, and thus can act as a frequency discriminator for the locking of the laser frequency to the transition center. In this paper, a fiber laser based NICE-OHMS system is established and the laser frequency is locked to the sub-Doppler absorption line of NH3 by sub-Doppler NICE-OHMS. To avoid the complex design of high-Q-factor bandpass filter at radio frequency, the frequency νpdh, used for Pound-Drever-Hall (PDH) locking, is generated by the beat frequencies νfsr and νdvb, which are used for NICE-OHMS signal and DeVoe-Brewer (DVB) locking, respectively. The performances of PDH and DVB locking are analysed by the frequency distribution deduced from the error signals, which result in frequency deviations of 4.3 kHz and 0.38 kHz, respectively. Then, the CEAS signal and NICE-OHMS signal in the dispersive phase for the measurement of NH3 at 1.53 μm under 70 mTorr are obtained, which show signal-to-noise ratios of 3.3 dB and 45.5 dB, respectively. Due to the high power built in the cavity, the sub-Doppler structure in the NICE-OHMS signal is obtained in the center of the absorption tansition with a satruation degree of 0.22, which is evaluated by the amplitude ratio between sub-Doppler and Doppler-broadened signals. The linewidth (full width at half maximum) of the sub-Doppler signal of 2.05 MHz is obtained, which is calibrated by the time interval between carrier and sideband. The free-running drift of the laser frequency is estimated by the NICE-OHMS signal and results in 50 MHz over 3 h. While, with locking, the relative deviation of the laser frequency is reduced to 16.3 kHz. In order to evaluate the long term stability of the system, the frequency deviation over 3 h is measured. The Allen deviation analysis shows that the white noise is the main noise of the system in the integration time shorter than 10 s. And the frequency stability can reach to 1.6×10-12 in an integration time of 136 s.

     

    目录

    /

    返回文章
    返回