搜索

x
中国物理学会期刊

8-9.5 keV正电子致Ti的K壳层电离截面的实验研究

CSTR: 32037.14.aps.67.20180666

Experimental study on Ti K shell ionization cross sections induced by 8-9.5 keV positrons

CSTR: 32037.14.aps.67.20180666
PDF
导出引用
  • 低能正电子碰撞原子内壳层电离截面的实验数据目前还很缺乏,从而影响了对近年来发展的各相关理论模型的检验,限制了慢正电子束流技术在诸多领域中的应用.本文采用慢正电子束流装置产生的8–9.5 keV正电子束碰撞纯厚Ti靶,利用硅漂移探测器(SDD)收集正电子碰撞Ti靶产生的X射线,同时采用高纯锗探测器在线获得与靶碰撞的入射正电子数,从而得到Ti的K壳层实验产额,并基于蒙特卡罗模拟程序PENELOPE获得模拟产额.将实验产额分别与内壳层电离截面数据库采用经典光学数据模型(ODM)和扭曲波玻恩近似理论模型(DWBA)的蒙特卡罗模拟产额进行对比,发现基于ODM理论模型的模拟产额与实验值有较大的偏差,基于DWBA理论模型的模拟产额与实验结果符合较好.根据实验产额和基于DWBA理论模型的模拟产额的比较结果,对蒙特卡罗模拟程序使用的DWBA理论模型数据库进行修正后再进行模拟和比较,从而得到可靠的8–9.5 keV正电子致Ti原子K壳层电离截面数据.

     

    Due to lack of experimental data of the inner shell ionization cross sections induced by low-energy positron, advanced theoretical models developed in recent years cannot be correctly evaluated, and the application of slow positron beam technique is greatly limited. Here we present the method of obtaining reliable experiment data of atomic inner-shell ionization cross section by positron impact. In this work, the slow positron beam device is used to generate 8-9.5 keV positron beams impacting on a pure thick Ti target, and the silicon drift detector (SDD) is adopted to collect the X-ray spectra produced by positrons impacting on thick Ti target, and the incident positron numbers are obtained by applying an HPGe detector to on-line collect annihilation photons. Then the experimental characteristic X-ray yields of Ti K shell impacted by 8-9.5 keV positron could be acquired. Meantime, the simulated characteristic X-ray yields are acquired by the PENELOPE program simulating the experiments. In the comparison between the experimental yields and the simulated yields based on two sets of different inner shell ionization cross section database in the PENELOPE code, i.e. the optical data model (ODM) and the distorted-wave Born approximation model (DWBA), there is a large difference between the simulated data from the ODM theoretical model and the experimental values, while the simulated yields from the DWBA theoretical model are in good agreement with the experimental results. Accordingly, a correction factor is introduced to modify the DWBA theoretical model database which is used in the PENELOPE, and then the experimental process is re-simulated. When the simulated yields and the experimental yields are in the highest consistence, the reliable Ti K shell ionization cross sections impacted by 8-9.5 keV positron could be obtained. The biggest advantage of using this method to obtain atomic inner-shell ionization cross section impacted by positron is that the effects of the multiple scattering of incident positrons in the thick target, from the bremsstrahlung and annihilation photons, and other secondary particles on the experimental characteristic X-rays do not need calculating (the calculation method that has been developed previously cannot give the more correct result about the contribution of the multiple scattering of incident positrons, from the bremsstrahlung and annihilation photons, and other secondary particles to characteristic X-rays).

     

    目录

    /

    返回文章
    返回