搜索

x
中国物理学会期刊

各向异性海森伯自旋链中的超椭圆函数波解

CSTR: 32037.14.aps.67.20181005

Wave solitons of hyper-elliptic function in anisotropic Heisenberg spin chain

CSTR: 32037.14.aps.67.20181005
PDF
导出引用
  • 在霍尔斯坦-普里马科夫表象中研究了各向异性海森伯自旋链模型.在半经典近似条件下,考虑高阶非线性项和周期性边界条件,应用相干态求出了用雅可比椭圆函数的反函数的组合表示的超椭圆函数波解,并讨论了解的物理意义.

     

    There are various nonlinear solutions in the anisotropic Heisenberg spin chain model (AHSCM), such as soliton solutions. In consideration of high-order nonlinear terms, a good modified nonlinear analytical solution can be obtained under reasonable simplification conditions. The purpose of this paper is to find the nonlinear solutions other than soliton of AHSCM. We use Holstein-Primakoff representation to study the AHSCM. Under the semi-classical approximation, considering the high order nonlinear term and the periodic boundary condition, an improved nonlinear Schrodinger equation and its wave solutions of the hyper-elliptic function expressed by the combination of the inverse function of Jacobi elliptic function are obtained through using the coherent state. These solutions can be expressed by the combination of the inverse functions of the first kind of elliptic functions. In the limit case, these solutions are reduced to wave solutions of sinusoidal (or cosine) functions, or wave solutions that can be represented by hyperbolic tangent functions. The energy levels of these nonlinear solutions can be obtained theoretically by the normalized conditions, but even by using hyper-elliptic functions, it is difficult to express them as analytic expressions.

     

    目录

    /

    返回文章
    返回