搜索

x
中国物理学会期刊

反馈脉冲棘轮的能量转化效率研究

CSTR: 32037.14.aps.67.20181066

Energy conversion efficiency of feedback pulsing ratchet

CSTR: 32037.14.aps.67.20181066
PDF
导出引用
  • 研究了反馈脉冲棘轮的定向输运及能量转化效率.详细讨论了弹簧自由长度、耦合强度及脉冲相位等参量对耦合布朗粒子定向输运性能的影响.研究发现,一定自由长度和耦合强度都能促进反馈脉冲棘轮的定向输运,并能使耦合粒子拖动负载做功时的能量转化效率达到最大.此外,通过调节脉冲相位能使反馈棘轮在一个演化周期内获得两次流反转,且合适的相位还能增强反馈棘轮的定向输运.所得结论不仅可为实验上设计合适的反馈脉冲作用来优化棘轮的定向输运性能,而且还能为生物医疗上药物的精准投放提供一定的理论参考.

     

    Biomolecular motors are a big family of protein, and play a very important role in transporting the organelles within cells. They can also convert chemical energy into mechanical energy. In order to study the dynamic mechanism of molecular motors in depth, a great many of Brownian ratchet models such as double-temperature ratchet, feedback control ratchet, and hand-over-hand ratchet have been proposed. By investigating different kinds of ratchets, it is better to comprehend the directed transport of Brownian particles and obtain an insight into the transport process in biomedicine. Especially, the investigation of Brownian ratchets can also be used for improving the accurate drug delivery and effectively utilizing the medicine.Until now, the directed transport of ratchet has aoused the interest of researchers. It is found that a certain driving phase can lead to the current reversal of the underdamped ratchets in theory. A large number of experiments have shown that most of the biomolecular motors in cells are enzyme protein macromolecules and they can carry the “cargos” to implement the directed transport. Interestingly, molecular motors have high efficiency usually, and some of them can even reach an efficiency close to 100% in experiment. Nevertheless, it is found that the energy conversion of Brownian motors is low as indicated by calculating the rate between the effective work of particles and the input energy of ratchets. According to a comparison between the experimental results and theoretical analyses, it is well known that the efficiency of ratchets is still far from the actual motor efficiency measured experimentally. Therefore, how to increase the efficiency of molecular motor which is pulled by loads is still a very important research topic. Owing to the fact that the molecular motors are influenced by the cellular environment during the hydrolysis of ATP in the organism, the catalytic cycles of the coupled motor proteins are out of phase. This gives us an inspiration for establishing the corresponding feedback pulsing ratchet.Due to the effect of the feedback pulse on coupled ratchets, the directed transport character of pulsing ratchets when they drag loads is explored in the present work. And the directed transport, diffusion and energy conversion efficiency of coupled particles are discussed systematically. It can be observed that the directed transport of the feedback pulsing ratchets would be futher facilitated by adjusting suitable free length and coupling strength. Meanwhile, the energy conversion efficiency of coupled particles can obtain a maximum value under a certain free length and coupling strength. In particular, there is the current reversal in an evolutive cycle under a certain pulse. Moreover, the diffusion of coupled particles can be suppressed effectively by modulating the pulsing phase, thus the corresponding directed transport of pulsing ratchets can be facilitated. In addition, the energy conversion of feedback ratchets can also be improved if the load is appropriate. The current reserval obtained in this paper can be applied to the particle separation. On the other hand, these results provide some great experimental inspirations in the aspect of medical delivery.

     

    目录

    /

    返回文章
    返回