搜索

x
中国物理学会期刊

基于重复编码的海上可见光通信大气信道建模

CSTR: 32037.14.aps.67.20181112

Atmospheric channel model of maritime visible light communication based on repeated coding

CSTR: 32037.14.aps.67.20181112
PDF
导出引用
  • 可见光通信作为一种新型无线通信技术,在海上舰船场景中的应用吸引了广泛的关注.海上可见光通信系统受多种因素的影响,包括海浪随机起伏和大气湍流,大气湍流将导致可见光信号的强度随机波动,降低可见光通信系统在大气中的链路质量.本文基于对数正态衰减分布,建立了采用重复编码的海上可见光通信的链路评估模型.在此基础上,根据Pierson-Moskowitz海谱,分析了海上风速、大气折射率结构常数、能见度、重复编码分集度以及接收器孔径对可见光通信系统平均误码率的影响.本文提出的海上大气链路评估模型可为海上可见光通信网络的搭建提供重要参考.

     

    Visible light communication (VLC) is a new type of wireless communication technology, and its applications in offshore ships and ship-shore lamp signal systems are drawing increasing attention as a supplement of communication net. In maritime environment, VLC system is affected by many factors, of which the wave fluctuation and atmospheric turbulence are the most noticeable. The turbulence will make signal intensity fluctuate randomly, and thus reducing the performance of VLC system operating in the atmosphere. To establish an effective VLC network in the actual marine environment, an effective channel transmission model needs to be established and used to study the performance of the maritime VLC link. Considering large aperture diameter receiver with the aperture averaging effect, log-normal distribution model is employed to deduce the mathematical expression of average bit error rate of maritime VLC system in atmospheric turbulence. By using time-diversity to transmit interleaved symbols with repeated coding in a maritime VLC system, it is possible to ensure that the code-word passes through multiple channels to resist the deep fade performance, and to reduce the bit error rate due to the occurrence of deep fading in a single channel. In the actual application process, in order to improve the system performance, the average signal-to-noise ratio usually increases with the transmission power increasing, but for a VLC system, there are some difficulties in making the high-power high-rate visible light transmitters. And the power will produce light pollution and even damage the naked eye. The implementation of the repetitive coding principle is simple, and in some special cases it is even better than the complex orthogonal space-time coding and other schemes, so studying the system performance of the repetitive coding scheme is of considerable value for practical application. Based on the modified Pierson-Moskowitz spectrum, the effect of wave height, transmission distance, atmospheric turbulence intensity, receiver aperture size and visibility on the average bit error rate of VLC system are analyzed. The performance of the VLC system between lighthouse and ship is affected by the fluctuations of the sea waves, and the average bit error rate changes with randomness and complexity like the sea waves in a short distance. As the wind speed increases, the marine environment becomes worse and the average bit error rate is undulate. The average bit error rate of maritime VLC increases with the increasing of transmission distance and atmospheric turbulence intensity, and with the decreasing of receiver aperture size, wavelength and average signal-to-noise ratio. Atmospheric turbulence intensity and visibility have a significant effect on the system performance, and it should be emphatically considered to take measures to reduce the influence. Increasing receiver aperture and repetitive coding are effective to a certain extent. In the present work a new model is proposed for evaluating the performance of a maritime VLC system and providing reference for practical application.

     

    目录

    /

    返回文章
    返回