搜索

x
中国物理学会期刊

激光聚焦扰动作用下高超声速边界层稳定性实验研究

CSTR: 32037.14.aps.67.20181192

Influence of laser-generated perturbations on hypersonic boundary-layer stability

CSTR: 32037.14.aps.67.20181192
PDF
导出引用
  • 在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.

     

    In this paper, the boundary layer flow stability is investigated experimentally in a 7° half-angle straight cone under the condition of Mach number 6 and unit Reynolds number 3.1×106/m. Expanded shock wave generated by focusing laser in a limit space is used as the small artificial disturbance, and the influence of the laser-generated perturbation on the stability of the hypersonic boundary layer is analyzed. In the experiment, the wall fluctuation pressure is measured by the high-frequency pressure sensors whose response frequencies each reach a value on the order of megahertz. Through the short time Fourier transformation and power spectrum density analysis of the pressure data, the results show that when the laser-generated perturbation is added to the flow field, the position of the second mode wave advances and the amplitude of the disturbance wave greatly increases. Within the same flow range, the laser focusing on disturbance pushes the disturbance wave in the boundary layer from the linear development phase into the nonlinear development state. The laser-generated perturbation has a significant effect on the promotion of the development of disturbance waves in the boundary layer. At the same time, laser-generated perturbation that has different influences on the boundary layer when it focuses on different positions. When the laser focus disturbance focuses on the location X=100 mm, the amplitude of the disturbance wave with a frequency of 90 kHz in the boundary layer grows fastest, and the amplitude magnification at the position of X=500 mm is 3.81. When the laser perturbation is added to the free flow in front of the cone, the frequency of the disturbance wave with the fastest amplitude increase speed greatly decreases to 73 kHz. In the same range, the amplitude magnification is 4.51 times. It can be seen that when the laser focuses on the free stream upstream from the cone, its effect on the disturbance wave in the boundary layer is more significant.

     

    目录

    /

    返回文章
    返回