搜索

x
中国物理学会期刊

利用扩散场信息的超声兰姆波全聚焦成像

CSTR: 32037.14.aps.67.20181268

Full focal imaging of ultrasonic Lamb waves using diffuse field information

CSTR: 32037.14.aps.67.20181268
PDF
导出引用
  • 利用兰姆波的扩散场信号,实现了距离传感器较近缺陷的全聚焦成像.通过两传感器接收的扩散场全矩阵信号进行互相关,恢复出两传感器之间的格林函数响应,重建新的全矩阵.该重建全矩阵削弱了直接耦合采集响应信号中存在的早期饱和非线性效应信号,恢复了被遮盖的近距离缺陷散射信号.在含缺陷的各向同性铝板中激发兰姆波,重建信号的早期信息与直接俘获信号的后期信息相结合形成混合全矩阵,结合全聚焦成像,优化成像效果.所提方法为薄板类结构中距离传感器较近缺陷的兰姆波无损检测提供了理论指导.

     

    In this paper, a method is presented in which that the diffuse field information of Lamb waves is used to realize the full focal imaging of the defect that is near the transducer array. The near distance means that the defect is located in the near field of ultrasonic phased array and satisfies the near field calculation formula. Near field acoustic information of the defect is obscured by the nonlinear effects of early time saturation present in a directly acquired ultrasonic inspection. The approach proposed here is to recover near filed information through cross-correlation of diffuse fields. The diffuse field is generated through multiple scattering and reflection effects after sufficiently long time transmission of ultrasonic signal in a bounded medium. The near field information is implicitly contained throughout the diffuse field. By cross-correlating the diffuse fields of ultrasonic responses recorded at two monitoring points, the Green's functions between the two points is recovered and the direct response between them is obtained. This idea is applied to the full matrix capture of ultrasonic phased array in which the full matrix is formed by sequential acquisition of responses for each transmitter-receiver pair. A virtual array of emitters and receivers is therefore established. Typically, phase delays are used in post-processing to achieve advanced imaging. Here an undelayed full matrix of inter-element responses is reconstructed through cross-correlation of a later time diffuse full matrix. In order to evaluate the applicability of the method for ultrasonic non-destructive testing, the process of full matrix reconstruction is demonstrated experimentally on an aluminium plate containing the near field defect. Combining the full focal imaging, it is shown that a hybrid full matrix formed through a temporally weighted sum of coherent and reconstructed matrices reduces the background noise and allows the effective imaging of near field defect by direct contact experimental measurements. However, the near field defect is hidden by the region of artificial noise in conventional coherent capture images. The proposed imaging method presents a theoretical guidance for detecting and imaging near field defect in plate-like configurations by using the Lamb wave nondestructive testing method.

     

    目录

    /

    返回文章
    返回