搜索

x
中国物理学会期刊

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

CSTR: 32037.14.aps.67.20181522

In-situ measurement of diamagnetic response of potassium-adsorbed multi-layer FeSe ultrathin films on SrTiO3(001) substrate

CSTR: 32037.14.aps.67.20181522
PDF
导出引用
  • SrTiO3(001)单晶表面上生长的单层FeSe薄膜显示出了超乎寻常的高温超导电性,其超导增强机制的一个重要因素是电子由衬底转移到了单层FeSe薄膜当中.基于此认识,研究者们在吸附了钾(K)原子的多层FeSe薄膜表面上观察到了类似超导能隙的隧穿能谱和光电子能谱.但这种自上而下的电子掺入方式在多层FeSe薄膜表面上可能引起的高温超导电性,还缺乏零电阻或迈斯纳效应等物性测量实验的直接证实.本研究利用自行研制的一台特殊的多功能扫描隧道显微镜,在生长于SrTiO3(001)衬底上的多层FeSe薄膜表面上,不但观察到了超导能隙随K吸附量的变化,而且利用原位双线圈互感测量技术,成功地的观察到了该薄膜的抗磁响应,并由此确定了该薄膜样品呈现迈斯纳效应的超导转变温度为23.9 K.其穿透深度随温度的变化呈二次幂指数关系,表明该体系的超导序参量很可能具有S±配对对称性.

     

    A single-unit-cell layer FeSe ultrathin film grown on SrTiO3(001) substrate exhibits remarkable high-temperature superconductivity, which has aroused intensive research interest. Electron transfer from the substrate to the FeSe layer has been shown to play an indispensable role in enhancing the extraordinary superconductivity. With this idea, researchers have tried to search for new high-temperature superconducting material systems including K-adsorbed multi-layer FeSe ultrathin films, on which superconducting-like energy gaps have been observed with scanning tunneling spectroscopy and photoelectron spectroscopy. However, the high-temperature superconductivity of the multi-layer FeSe ultrathin films has not yet been confirmed by directly observing the zero resistance or Meissner effect. With a self-developed multi-functional scanning tunneling microscope (STM+), which enables not only usual STM functionality, but also in situ two-coil mutual inductance measurement, we successfully observe the diamagnetic response of a K-adsorbed multilayer FeSe ultrathin film grown on a SrTiO3(001) substrate, and thus determine its transition temperature to be 23.9 K. Moreover, we calculate the penetration depth of the film from the measured results and find that its low-temperature behavior exhibits a quadratic variation, which strongly indicates that the order parameter of the superconducting K-adsorbed multi-layer FeSe ultrathin film has an S± pairing symmetry.

     

    目录

    /

    返回文章
    返回