搜索

x
中国物理学会期刊

II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光

CSTR: 32037.14.aps.68.20181211

Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures

CSTR: 32037.14.aps.68.20181211
PDF
导出引用
  • 自旋是基本粒子(电子、光子)角动量的内在形式.固体中体现自旋特征的集体电子行为如拓扑绝缘体等是当前凝聚态物理领域关注的焦点,是基态行为.激子作为电子空穴对的激发态且寿命很短,可复合发光,它是否能体现自旋极化主导的行为?对此人们的认识远不如针对基态的电子.激子磁极化子(exciton magnetic polaron,EMP)是由磁性半导体微结构中铁磁自旋耦合态与自由激子相互作用形成的复合元激发,但其研究很有限.本文概述了我们在稀磁半导体微纳米结构中的EMP及其发光动态学光谱、自旋极化激子凝聚态的形成方面取得的一些进展,展望了未来可能在自旋光电子器件、磁控激光、光致磁性等量子技术方面的潜在应用.

     

    Spin is an intrinsic nature of the angular momentum of elementary particle like electron and photon. Currently the collective spin behaviors of the multi-electrons in condensed matter, such as GMR, CMR and topological insulator which are the behaviors of ground state, have been a research focus in the condensed matter physics, due to the fact that the collective spin is related to electronic transports. Exciton is another type of bosonic quasiparticle, an excited state of electronhole pair in solid, which has a short lifetime and can recombine to emit light. Whether excitons can also exhibit the spin-polarized dominance before they recombine, has not been understood yet. It is proposed that excitons form condensate by themselves or light binding. Can coupled spins conduce to the formation of the exciton condensate in solid? Excitonic magnetic polaron (EMP) is the composite exciton of ferromagnetically coupled spins and free excitons in magnetic semiconductors, which may lead to ferromagnetic Bose-Einstein condensate (BEC) due to the binding of collective spins in a microstructure, like the photon binding excitons (exciton polaritons) in an optical cavity However, this subject has not been a research focus yet. Here in this paper, we review the progress of the EMP formation, its dynamic behaviors and spin polarized collective EMP emission and lasing in Ⅱ-VI dilute magnetic semiconductor micro-structures in our group Besides, we also present some expectations for the applications or advances in the quantum phenomena such as spin-related emission and lasing, spin induced BEC, photon induced magnetism and Hall effect, etc. Even more achievements of EMP could be expected in the future.

     

    目录

    /

    返回文章
    返回