搜索

x
中国物理学会期刊

基于Q-plate的双图像非对称偏振加密

CSTR: 32037.14.aps.68.20181902

Q-plate based dual image asymmetric polarization encryption

CSTR: 32037.14.aps.68.20181902
PDF
HTML
导出引用
  • 基于Q-plate提出了一种对两幅图像做非对称偏振加密的新方法. 在该方法中, 首先, 将待加密的两幅图像通过干涉分解成两块纯相位板; 其次, 将这两块纯相位板分别编码到偏振光的两个正交分量中; 最后, 利用Q-plate和像素化的偏振片改变这束光的偏振分布, 达到对图像的加密效果, 用电荷耦合器件接收输出面的强度分布图作为最终的密文. 其中一块纯相位板作为解密密钥. 算法的解密密钥不同于加密密钥, 由此实现了非对称加密. 由于Q-plate是电调控的, 它的每个像素点的光轴各不相同, 所以能够根据描述变面结构空间旋转率的常数q来改变每个像素的偏振态. 加密过程中用Q-plate的q值和像素化的偏振片的偏振角度作为加密密钥, 这两个加密密钥具有很高的敏感性, 极大地提高了算法的安全性. 数值模拟结果验证了该方法的可行性和有效性.

     

    With the rapid development of computer network technology, information security has drawn considerable attention in recent years. Owing to the characteristics of multi-dimensional operation and parallel processing capability, optical image encryption techniques are arousing great interest in many exciting fields. Since the pioneering work on optical image encryption using double random phase encoding technique, a large number of algorithms and architectures have been proposed and realized. However, with the further analysis of the securities of these schemes, most of them have been verified to be vulnerable to different types of attack algorithms. Recently, optical encryption schemes based on the polarization properties of light wave have been extensively studied, for an additional flexibility in the encryption key design is provided, which can achieve high robustness against brute force attack by a combination of multiple private keys. Nevertheless, optical encryption schemes based on the polarization properties of light wave could still be vulnerable to known- and chosen- plaintext attacks. Therefore, in this paper, a novel asymmetric polarization encryption method is implemented for dual images, and combined with interference-based optical image encryption method and a Q-plate. First, the information about the two images to be encrypted is separated into two pure phase plates by means of interference optical image encryption, which will be further encoded into two mutually orthogonally polarized light beams. Next, the Q-plate and pixelated polarizer are used for realizing different polarization distributions of the two light beam. Ultimately, the output intensity distribution is recorded by a charge coupled device (CCD) which will be treated as the final ciphertext. For actualizing the asymmetric encryption, one of the pure phase plates acts as a decryption key, which is different from the encryption key. We can control the polarization state of each pixel according to the parameter q, causing the Q-plate to be electrically controllable and the optic-axis orientation of each pixel to differ from one another. It should be emphasized that the value of q and the polarization angle of the pixelated polarizer play the role of two encryption keys, which improves the security of the algorithm extremely, due to their high sensitiveness. Theoretical analyses and numerical simulations verify the feasibility and effectiveness of the proposed encryption scheme.

     

    目录

    /

    返回文章
    返回