搜索

x
中国物理学会期刊

基于双波长时域合成技术的微波光子波形产生

CSTR: 32037.14.aps.68.20190151

Photonic microwave waveform generation based on dual-wavelength time domain synthesis technology

CSTR: 32037.14.aps.68.20190151
PDF
HTML
导出引用
  • 方波、三角波和锯齿波等微波波形在医学成像、高速通信和高精度测量系统中具有广泛应用. 本文提出了一种基于双波长时域合成技术的微波光子波形产生方案, 该方案主要采用两个激光器、两个马赫-曾德尔调制器、一个波分复用器和一个可调光延时线. 理论分析了方案中方波、锯齿波和三角波波形的时域合成原理, 并通过实验成功产生了2.5 GHz重复频率的方波、锯齿波和三角波波形. 实验结果与理论分析相符合, 验证了该波形产生方案的可行性. 并且该系统具有良好的可调谐特性, 通过改变微波源的调制频率, 可以实现输出微波光子波形的重复频率调谐. 实验也成功产生了5 GHz重复频率的方波、锯齿波和三角波波形.

     

    Microwave waveforms, such as square waveforms, sawtooth waveforms and triangle waveforms are widely used in radar communication, electronic measurement and medical imaging and so on. Using photonic microwave technology to generate arbitrary microwave waveforms has been a research hotspot.
    In this paper, a photonic microwave waveform generation scheme based on dual-wavelength time domain synthesis is proposed and experimentally demonstrated. Used in this scheme mainly are two lasers, two single-drive Mach-Zehnder modulators, a wavelength division multiplexer and a tunable optical delay line. The two Mach-Zehnder modulators are respectively biased at different operating points. When two beams with different wavelengths are superimposed in the time domain, different microwave waveform outputs can be generated. Therefore, by adjusting the bias voltage and modulation depth of the modulator, the phase and amplitude of the modulated optical signal can be controlled, and finally the photonic microwave waveform is generated.
    At first, the generation mechanism of square waveform, sawtooth waveform and triangle waveform are analyzed, and the comparisons among ideal square waveform, sawtooth waveform, triangle waveform and their third-order waveforms are made through the simulation analysis. It is verified that third-order waveforms become close to the ideal waveforms. Since the proposed scheme produces higher-order components, and the waveforms of the first three orders are the same as the ideal waveforms, so the scheme has good waveform generation capability. And then square waveform, sawtooth waveform and triangle waveform with a repetition rate of 2.5 GHz are successfully generated experimentally. Thus, experimental results are well consistent with the theoretical analyses. In addition, the system also has good tunable characteristics. By changing the modulation frequency of the modulator, the frequency tuning of the output photonic microwave waveforms can be realized, and square waveform, sawtooth waveform and triangular waveform with a repetition rate of 5 GHz are also experimentally achieved. The repetition rate of the generated microwave waveform is mainly limited by the bandwidth of modulator and electrophotonic detector, so the devices with higher bandwidth can be used to generate arbitrary waveform with a higher repetition rate. Therefore, the scheme has good application prospects.

     

    目录

    /

    返回文章
    返回