搜索

x
中国物理学会期刊

光频梳频域干涉测距主要参数分析及一种改进的数据处理方法

CSTR: 32037.14.aps.68.20190836

Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method

CSTR: 32037.14.aps.68.20190836
PDF
HTML
导出引用
  • 本文对光学频率梳频域干涉测距中的测距范围、分辨力、非模糊范围等的影响因素进行了分析, 并说明了传统傅里叶变换法的局限性和系统误差产生原因; 提出了一种等频率间隔重采样数据处理方法, 该方法基于三次样条插值, 修正了傅里叶变换法因频率量不等间隔造成的误差; 在此基础上提出峰值位置拟合算法, 解决了包络随距离展宽的问题. 模拟光谱仪数据并使用算法处理, 仿真结果表明系统误差小于0.2 μm, 且可将测量范围扩展至周期内任意位置. 最后搭建经典Michelson测距系统并进行了绝对距离测量实验, 将测量结果与干涉仪测量值进行对比, 达到了任意位置3 μm以下的误差.

     

    With the rapid development of modern technology, high-precision absolute distance measurement is playing an important role in many applications, such as scientific research, aviation and industry measurement. Among the above various measurement methods, how to realize higher-accuracy, larger-scale, and faster-speed measurement is particularly important. In the traditional technique for long-distance measurement, the emergence of optical frequency comb (OFC) provides a breakthrough technology for accurately measuring the absolute value of distance. The OFC can be considered as a multi-wavelength source,whose phase and repetition rate are locked. The OFC is a very useful light source that can provide phase-coherent link between microwave and optical domain, which has been used as a source in various distance measurement schemes that can reach an extraordinary measurement precision and accuracy. A variety of laser ranging methods such as dual-comb interferometry and dispersive interferometer based on femtosecond laser have been applied to the measuring of absolute distance.
    In this paper, the factors affecting the resolution and the non-ambiguous range of spectral interferometry ranging using OFC are particularly discussed. We also analyze the systematic errors and the limitations of traditional transform methods based on Fourier transform, which can conduce to the subsequent research.
    To address the problem caused by low resolution and unequal frequency interval, we propose a data processing method referred to as equal frequency interval resampling. The proposed method is based on cubic spline interpolation and can solve the error caused by the frequency spectrum broadening with the increase of distance. Moreover, we propose a new method based on least square fitting to calibrate the error introduced by the low resolution of interferometry spectrum obtained with fast Fourier transform (FFT). With the proposed method, the simulation results show that the systematic error is less than 0.2 μm in the non-ambiguity range and the system resolution is greatly improved. Finally, anabsolute distance measurement system based on Michelson interferometer is built to verify theproposed method. The measurement results compared with those obtained by using a high-precision commercial He-Ne laser interferometer show that the distance measurement accuracy is lower than 3 μm at any distancewithin the non-ambiguity range. The experimental results demonstrate that our data processing algorithm is able to increase the accuracy of dispersive interferometry ranging with OFC.

     

    目录

    /

    返回文章
    返回