搜索

x
中国物理学会期刊

新型高效热离子功率器件的性能特性研究

CSTR: 32037.14.aps.68.20190882

Performance characteristics of a novel high-efficientgraphene thermionic power device

CSTR: 32037.14.aps.68.20190882
PDF
HTML
导出引用
  • 应用固体物理和不可逆热力学理论, 研究新型高效石墨烯热离子热电功率器件的性能特性. 通过数值求解器件高温和低温端的能量平衡方程, 确定器件阴极板和阳极板的温度; 分析输出电压和阴极板功函数对器件的伏安特性及两个极板温度的影响, 确定器件在最大功率密度和最大效率时的参数特性; 折衷考虑功率密度和效率, 给出参数的优化取值区间; 分析了高温热源温度对优化性能的影响. 本文所得结果可为热离子能量转换器件的研制提供理论指导.

     

    According to the theories of the solid physics and irreversible thermodynamics, the performance characteristics of a novel high-efficient graphene thermionic power device (TPD) are studied. The temperature of the cathode plate and anode plate are determined by solving the energy balance equation of hot and cold sides of the TPD. The effects of the output voltage and the work function of the cathode on the volt-ampere characteristics of the TPD and the temperature of the two electrodes are analyzed to determine the parametric characteristics of the TPD at the maximum power density and efficiency. The power density and efficiency are compromised, and the parametric optimal designs are given. The influence of the temperature of heat source at high temperature on optimization performance is analyzed. The results obtained here can provide theoretical guidance for developing the thermionic energy conversion devices.

     

    目录

    /

    返回文章
    返回