搜索

x
中国物理学会期刊

单端驱动银球腔的激光能量耦合和分配

CSTR: 32037.14.aps.68.20191026

Laser energy coupling and partitioning of silver spheral hohlraum with one laser entrance hole

CSTR: 32037.14.aps.68.20191026
PDF
HTML
导出引用
  • 将高功率激光注入单孔球形银黑腔, 产生的高温辐射源能够驱动超声速冲击波, 在实验室模拟各种天体物理现象. 利用神光Ⅲ原型装置上四路3.2 kJ激光, 聚焦注入Φ800 μm、注入口Φ650 μm的球形银腔, 可以产生峰值温度为240 eV的高温辐射源, 驱动剩余球壳在气体区产生超声速冲击波. 实验结果显示, 银腔的激光-X光转换效率为0.68, 银反照率为0.83. 散射光份额约为15%, 超热电子份额小于1%, 从注入口漏失的辐射流约占总能量的30%, 从厚度5.6 μm的Ag和10 μm的CH球壳漏失的辐射流约占总能量的9%, 约45%的能量转换为剩余球壳的动能和内能. 黑腔等离子体约在950 ps开始聚心, 基本不会影响1 ns脉宽激光注入. 在神光Ⅲ原型装置开展的银球腔激光能量耦合和分配实验, 为后续超声速冲击波实验奠定了基础.

     

    The matter can be instantaneously heated up to a high energy density state by the high power laser. When the high power laser is injected into silver spherical hohlraum, the high temperature radiation source formed in the hohlraum can drive the high velocity blast wave in the laboratory to study various astrophysical phenomena such as supernova remnants, stellar jets, etc. As the basis of laser driven blast wave experiments, the first experimental results of energy coupling and partitioning of silver spherical hohlraum with one laser entrance hole (LEH) on Shenguang Ⅲ prototype laser facility are introduced in this work. Four beams with 3.2 kJ of laser energy in a 1ns square laser pulse from the upper hemisphere are used to heat the silver spherical hohlraum targets. The silver spherical hohlraum targets are 800 μm-diameter and 650 μm-diameter LEH, and are fabricated by electroforming silver onto an acrylic mandrel. The laser coupling and partitioning to the targets are investigated by using the optical and X-ray diagnostics. The experimental results show that the radiation temperature is beyond 240 eV, the laser-to-X-ray conversion efficiency of silver hohlraum is 0.68 and the silver albedo is 0.83. With the driving of the high temperature radiation source, most of laser energy is coupled to the residual shell, and the high velocity blast wave can be generated. The laser energy not coupled to the target is lost through scattering light, emitting hot electrons and radiating X-rays. The experimental results show that the fraction of energy lost due to the scattering light is 15%, that due to emitting the total hot electrons is less than 1%, almost 30% of the laser energy is lost from the LEH by radiating the X-ray flux, almost 9% of the laser energy leaks from the spherical shell consisting of the 5.6 μm-thick Ag layer and 10 μm-thick CH layer through the X-ray radiation flux, and 45% of the laser energy is converted into the kinetic energy and internal energy of the remaining spherical shell. Therefore, more than 50% of the laser energy will be used to drive the high velocity blast wave in the subsequent experiments. After 950 ps, the silver plasma is concentrated in the center of the silver spherical hohlraum, which does not affect the injection of 1ns laser. The experiment on energy coupling and partitioning of a spherical silver hohlraum laser is carried out for the first time on Shenguang Ⅲ prototype laser facility, which lays a foundation for the subsequent experiments on laser driven blast wave.

     

    目录

    /

    返回文章
    返回