搜索

x
中国物理学会期刊

基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用

CSTR: 32037.14.aps.68.20191494

Focused ion beam based nano-kirigami/origami for three-dimensional micro/nanomanufacturing and photonic applications

CSTR: 32037.14.aps.68.20191494
PDF
HTML
导出引用
  • 高精度的三维微纳制造技术是现代光电子学和微纳光子学发展的重要基础之一, 是实现下一代微纳光子集成器件的重要前提. 纳米尺度的剪纸和折纸技术由于能够实现丰富的三维形变, 正发展成为一门新兴的研究领域. 本文系统地介绍了一种新型的片上三维微纳加工方法—基于聚焦离子束的纳米剪纸/折纸技术. 该技术利用聚焦离子束辐照具有不同拓扑形貌的自支撑膜片, 可实现优于50 nm精度、前所未见的三维形状变换, 包括片上、实时的多向折叠、弯曲、扭曲等形变. 提出了“树型”纳米剪纸和“闭环”纳米剪纸两种类型的加工方法, 并针对不同类型的工艺特性和优缺点进行分析对比. 利用全局扫描纳米剪纸技术制备的闭环纳米结构实现了独特的光学效应, 包括超光学手性、超构表面衍射、相位和偏振调控以及光子自旋霍尔效应等. 研究结果表明, 纳米剪纸/折纸形变技术在保持结构复杂性和功能性的同时, 可实现高精度、原位、片上、一步成型的三维微纳加工, 可望为三维微纳光子器件的设计、制备和应用提供一类新的设计方法和技术途径, 乃至为相关微纳光学、微电子、微机电系统、生物医学等领域的发展提供新颖的加工平台.

     

    High-resolution three-dimensional (3D) micro-/nano-fabrication techniques form an important basis for developing the modern micro-/nano-photonics. In this paper, we systematically introduce a new 3D micro-/nano-fabrication technique named as nano-kirigami, which is based on the focused ion beam (FIB) induced in-situ “cutting” and “folding” of a suspended gold film. The high-dose FIB milling fulfils the “cutting” process, and the low-dose FIB irradiation of the effective sample area acts as a mean of “folding”, well representing the fabrication principle of macro-kirigami. By utilizing the topography-guided stress equilibrium during FIB irradiation, nano-kirigami can reliably achieve rich 3D shape transformations, such as multi-directional folding, bending, buckling and twisting, with resolution down to below 50 nm. Taking the FIB-induced stress as a stimulus, the FIB-based nano-kirigami can be divided into “tree-type” and “closed-loop” fabrication from the perspective of topological classifications in multibody dynamics. The characteristics, advantages and disadvantages between the two different types of processes are analyzed and summarized in the paper.
    The rich 3D shape deformation characteristics bring about unimaginable possibilities for the fabrication of various novel 3D structures, and the generation of new geometries facilitates the exploration of new physics. For example, by taking advantage of the 3D plasmonic conductive couplings, the composite symmetry-broken SRR-based configuration is constructed for the efficient generation of significant chiral Fano resonances. Moreover, with the close-loop nano-kirigami induced by FIB global irradiation, the giant intrinsic optical chirality is achieved in a 3D pinwheel-like structure with exotic twisting and rotation geometric features. Especially, the rotation of the linear polarization direction, caused by the circular birefringence, reaches an efficiency of 310000°/mm which exceeds the reported value of chiral metamaterial and congeneric two-dimensional planar nanostructure. Another example is the metasurface formed by alternately arranging the left-handed pinwheel structure and right-handed pinwheel structure in the horizontal plane, which can diffract cross-polarized transmitted light efficiently while clear photon spin Hall effect is observed.
    The introduced nano-kirigami technique, as well as the generated exotic 3D nanostructures and their photonic applications, can build up a novel 3D miro-/nano-fabrication platform for versatile structural geometries with promising functionalities, which may find great potential applications in areas such as micro-/nano-photonics, electronic and magnetic devices, plasmonics, optomechanics, micro-/nano-electromechanical systems, etc.

     

    目录

    /

    返回文章
    返回