搜索

x
中国物理学会期刊

非规则形状介质内辐射-导热耦合传热的间断有限元求解

CSTR: 32037.14.aps.69.20191185

Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media

CSTR: 32037.14.aps.69.20191185
PDF
HTML
导出引用
  • 采用间断有限元法(discontinuous finite element method, DFEM)求解非规则形状介质内的辐射导热耦合传热问题, 得到了典型非规则形状介质内辐射导热耦合传热问题的高精度数值结果. 和传统连续型有限元方法不同, DFEM将计算区域划分成相互独立的离散单元, 形函数的构造、未知量的加权近似以及控制方程的求解均在每一个离散单元上进行. 通过在单元之间施加迎风格式的数值通量, DFEM保证了整个计算区域的连续性, 因此这种方法兼具良好的几何灵活性和局部守恒性. 推导了辐射传输方程和能量扩散方程的DFEM离散格式, 验证了DFEM求解辐射导热耦合传热问题的正确性; 同时研究了不同几何形状介质内辐射导热耦合传热问题, 得到了典型非规则形状介质内辐射导热耦合传热的高精度数值结果.

     

    The discontinuous finite element method (DFEM) is used to investigate the coupled radiation-conduction heat transfer in an irregular medium, and the highly accurate solutions for several typical media are numerically obtained. Comparing with the traditional continuous finite element method, the computational domain in the DFEM application is discretized into unstructured meshes that are assumed to be separated from each other. The shape function construction, field variable approximation, and numerical solutions are obtained for every single element. The continuity of the computational domain is maintained by modeling a numerical flux with the up-winding scheme. Thus the DFEM has the salient feature of geometry flexibility and simultaneously supports locally conservative solutions. The DFEM discretization for the radiative transfer equation and the energy diffusion equation are first presented, and the accuracies of the DFEM for coupled radiation-conduction heat transfer problems are verified. Combined radiation-conduction heat transfer problems in several irregular media are afterward solved, and the highly accurate DFEM solutions are presented.

     

    目录

    /

    返回文章
    返回