搜索

x
中国物理学会期刊

自旋轨道耦合量子气体中的一些新进展

CSTR: 32037.14.aps.69.20191241

Some recent progresses on the study of ultracold quantum gases with spin-orbit coupling

CSTR: 32037.14.aps.69.20191241
PDF
HTML
导出引用
  • 随着人造规范势和自旋轨道耦合在冷原子体系中的实现, 对这类效应的研究成为了冷原子物理研究的热门方向之一. 冷原子系统具有丰富的可操控性, 因此不仅可以作为优秀的量子模拟平台来研究其他领域中有意义的模型和问题, 还基于体系自身的特点衍生出了一系列新颖的问题和方向. 本文将以综述的形式介绍具有自旋轨道耦合的超冷原子系统中的一些新研究进展, 重点关注该体系中特有的物理要素, 如耗散、新颖的相互作用形式、大自旋和长程相互作用对系统性质的影响. 这些研究进展可以为理解自旋轨道耦合效应提供新的启示和思路.

     

    Artificial synthetic gauge field and spin-orbit coupling has been extensively studied following their experimental realization in ultracold atomic systems. Thanks for the versatile controllability, such systems not only provide possibilities to simulate and study important models in multidisciplinary fields of physics, but also work as an excellent platform to engineer novel states of matter and quantum phenomena. This paper reviews some recent progresses on the study of ultracold atomic systems with spin-orbit coupling, focusing on the effects induced by dissipation, novel interaction forms, large symmetry of spins, and long-range interactions. The investigation in these aspects is closely related to the characteristics of ultracold atomic systems, hence can bring new inspirations and perspectives on the understanding of spin-orbit coupling. In this review, we firstly investigate the appearance of a topological superradiant state in a quasi-one-dimensional Fermi gas with cavity-assisted Raman process. A cavity-assisted spin-orbit coupling and a bulk gap opening at half filling will be induced by the superradiant light generated in the transversely driven cavity mode. The topological superradiant state and the corresponding topological phase transition in the system can be driven by this mechanism. Then, symmetry-protected topological states of interacting fermions will be introduced in a quasi-one-dimensional cold gas of alkaline-earth-like atoms. Raman-assisted spin-orbit couplings in the clock states, together with the spin-exchange interactions in the clock-state manifolds will give rise to symmetry-protected topological states for interacting fermions, by taking advantage of the separation of orbital and nuclear-spin degrees of freedom in these alkaline-earth-like atoms. Furthermore, we show that an exotic topological defect, double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit-coupled Bose-Einstein condensates. It is found that the combined effects of SU(3) spin-orbit coupling and spin-exchange interaction determine the ground-state phase diagram. Finally, we demonstrate that spin-orbit coupling and soft-core long-range interaction can induce an exotic supersolid phase of Bose gas, with the emergence of spontaneous circulating particle current. This implies that a finite angular momentum can be generated with neither external rotation nor synthetic magnetic field, and the direction of the angular momentum can be altered by adjusting the strength of spin-orbit coupling or interatomic interaction.

     

    目录

    /

    返回文章
    返回