搜索

x
中国物理学会期刊

基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强

CSTR: 32037.14.aps.69.20191531

Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons

CSTR: 32037.14.aps.69.20191531
PDF
HTML
导出引用
  • 为提高太赫兹近场显微成像技术的分辨率, 设计了一款在Teflon探针的尖锥形表面镀上厚度渐变、具有相同占空比的超薄金属银制条带的探针, 用于实现探针尖端处人工表面等离激元的激发和太赫兹波的亚波长聚焦. 研究表明, 对于频率为0.1 THz的入射波, 厚度渐变镀银条带探针产生的紧聚焦光场的尺寸可稳定在20 μm左右(λ/150), 探针尖端处最大电场强度为入射电场强度的849倍. 研究还发现, 周期性金属条带的数目和入射电场的偏振方向可对探针尖端处产生的紧聚焦光斑的尺寸和电场强度等进行灵活有效的调控.

     

    In order to improve the resolution of terahertz near-field microscopic imaging technology, an ultra-thin thickness-graded silver-plated strip probe with the same duty cycle is designed to realize the excitation of spoof surface plasmons. By comparing with two other probes with different structures, it can be found that the thickness-graded silver-plated strip probe can produce a strong electric field enhancement effect. Thereafter, the influence of the polarization direction of the incident electric field and the number of periodic metal stripes on the electric field which are generated at the tip of the probe is investigated. It is found that this case is highly consistent with the electric field distribution in Richards-Wolf vector diffraction theory when the incident light is linearly polarized. The electric field intensity generated at the tip of the thickness-graded silver-plated strip probe can be flexibly and effectively manipulated by changing the polarization direction of the incident electric field. When the number of thickness-graded silver-plated strips is 12, the minimum size of the focal spot is 20 μm, which is λ/150. When the number of thickness-graded silver-plated strips is 4, the electric field intensity enhancement factor at the focal spot is 849. The electric field intensity enhancement factor at the focal spot increases continuously as the number of periodic metal stripes increases, and the size of focal spot decreases continuously as the number of periodic metal stripes decreases. This result shows that the tight focusing and electric field enhancement of terahertz waves can be achieved by using an ultra-thin thickness-graded silver-plated strip probe. The research results in this paper have important guiding significance for manipulating the electric field in the terahertz band.

     

    目录

    /

    返回文章
    返回